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Crop-yield forecasts provide useful 

information to growers, marketers, 

government agencies and other us-

ers. Yields for several crops in Cali-

fornia are currently forecast based on 

field surveys and farmer interviews, 

although official forecasts do not 

exist for many crops. Because broad-

scale crop yields depend largely on 

the weather, measurements from 

existing meteorological stations have 

the potential to provide reliable, 

timely and cost-effective predictions. 

We developed weather-based models 

of statewide yields for 12 major Cali-

fornia crops and tested their accuracy 

using cross-validation from 1980 to 

2003. Many of the weather-based 

forecasts were highly accurate, as 

judged by the percentage of yield 

variation explained by the forecast, 

the number of yields with correctly 

predicted direction of yield change, 

or the number of yields with cor-

rectly predicted extreme yields. The 

most successfully modeled crop was 

almonds, with 81% of yield variance 

captured by the forecast. Predictions 

for most crops relied on weather 

measurements well before harvest 

time, in many cases allowing longer 

lead times than existing procedures.

Forecasts of crop yields can provide 
important information about com-

modity markets and are frequently used 
by growers, industry and government to 
make decisions (Vogel and Bange 1999). 
For instance, growers may use forecasts 
to plan their harvest, storage and distribu-
tion strategies: California growers used 
the 2004 forecast of a large rice harvest to 

arrange greater storage capacity, and used 
a 2005 forecast of reduced almond pro-
duction to allocate limited quotas among 
preferred customers (D. Flohr, CASS, 
personal communication). Similarly, in-
dustries involved in handling and trading 
commodities often use information on fu-
ture harvests to make logistical decisions 
(Hammer et al. 2001).

Each year, the California Agricultural 
Statistics Service (CASS) estimates the size 
of the coming harvest for various major 
California crops, including almonds, 
grapes, olives, oranges and walnuts 
(NASS 2005a, 2005b). These estimates are 
categorized as either subjective or objec-
tive. The former are based on phone inter-
views with hundreds of farmers to assess 
their opinions of crop development, and 
the latter are based on field samples taken 
from hundreds of fields. Forecasts are 
generally made public 1 to 3 months be-
fore the end of harvest (NASS 2005a).

It is common knowledge that one 
of the main factors causing yields to 
change from year to year is climate vari-
ability — no two growing seasons expe-
rience exactly the same weather. Indeed, 
grower expectations of crop yields 
are likely to be based at least partially 
on subjective weather observations 
and perceived relationships between 
weather and yields. To our knowledge, 
objective, quantitative weather mea-
surements are not currently used in ex-
isting yield-forecast procedures. Such an 
approach would be attractive because 
yields could potentially be forecast at 
lower cost, with greater accuracy and 
longer lead times.

Building forecast models

To test the ability of weather mea-
surements to forecast crop yields prior 
to harvest, we studied the statistical 
relationships between historical weather 

Weather-based yield forecasts  
developed for 12 California crops

Weather-based yield predictions were developed for 12 major California crops, based 
on more than 20 years of daily weather records and actual yield data. The highest 
correlation between weather and yield was seen in almonds.
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Fig. 1. Observed and forecast yields from 1980 to 2003. Forecasts were derived for each 
year using a model fit to data in all other years. Coefficient of determination (R2) between 
observed and forecast yields is shown for each crop. 

TABLE 1. Economic value and national 
importance of production for crops studied

Crop	 2003 value*	 U.S. production

	 $ millions	 %
Grapes, wine	 1,828	 96
Lettuce	 1,634	 88
Almonds	 1,506	 99
Strawberries	 973	 83
Grapes, table	 953	 91
Hay	 950	 12
Oranges	 949	 22
Cotton	 774	 10
Tomatoes, 	 571	 95 
   processing	
Walnuts	 434	 99
Avocados	 402	 95
Pistachios	 173	 99

	*	 Values are taken from CASS (2004a), and are based on 
free-on-board (FOB) prices that include value-added 
items such as packing and inspections.

and crop-yield records. We selected 12 
crops (wine grapes, lettuce, almonds, 
strawberries, table grapes, hay, oranges, 
cotton, processing tomatoes, walnuts, 
avocados and pistachios) that are 
among the most valuable in California 
(table 1) (CASS 2004a), and obtained 
state yield data for 1980 to 2003 from 
California county agricultural commis-
sioners (CASS 2004b). Several crops 
have exhibited significant positive yield 
trends since 1980 due to management 
and cultivar changes, so we removed a 
linear trend from each crop to produce a 
time series of yield anomalies, or depar-
tures from expected yields. A positive 
anomaly indicates yields higher than 
expected based on time trends, and a 
negative anomaly indicates yields lower 
than expected.

Daily weather records for the same 
period were obtained for 382 stations 
throughout California from the California 
Climate Change Center at the Scripps 
Institution of Oceanography (M. Tyree, 
staff scientist, personal communication). 
The average daily minimum and maxi-
mum temperature and precipitation for 
each month in each county were then 
computed, resulting in a monthly time 
series of three variables for 24 years. For 
each crop, a statewide monthly time se-
ries for each meteorological variable was 
calculated by weighting each county by 
the relative area of the crop in that county 
in 2003 (Lobell et al. 2006).

The weather and yield data were 
then combined in linear regression 
models to test how well yield anoma-

Yields could potentially be forecast at lower cost, 
and with greater accuracy and longer lead times.

TABLE 2. Months and weather variables* used for yield forecasts

	 Year prior to harvest	 Year of harvest

Crop†	 Aug	 Sept	 Oct	 Nov	 Dec	 Jan	 Feb	 Mar	 Apr	 May	 Jun	 Jul	 Aug	 Sept

Grapes, wine		  ppt							       tmn		  ppt			 
Lettuce			   tmx				    tmx		  tmx					   
Almonds						      ppt	 tmn							     
Strawberries				    all										        
Grapes, table			   ppt			   ppt			   tmn			   tmn		
Hay							       ppt				    ppt			 
Oranges					     tmn					     ppt				  
Cotton										          tmx	 tmn			 
Tomatoes, processing									         tmx		  tmx			   tmn
Walnuts				    tmx			   ppt							     
Avocados	 tmx		  ppt							       tmn	
	*	 tmn = average minimum temperature; tmx = average maximum temperature; ppt = total rainfall; all = all three variables.
	†	 No weather variables are shown for pistachios, which were modeled using only previous years’ yields.
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squared variables and previous years’ 
yields — ranged from four to eight. 
(The model equations are omitted for 
brevity, but can be obtained from the 
authors.)

An important step in building sta-
tistical models is to independently test 
model predictions, because tests using 
the same data that was used to calibrate 
the model tend to be overly optimistic 
(Hastie et al. 2001). The straightforward 
approach of reserving part of the data 
during model calibration, however, is 
problematic when the quantity of data is 
limited. An alternative approach, which 
we employed here, is “leave-one-out” 
cross-validation. In this approach, a sin-
gle year is left out of the calibration step 
and subsequently compared to model 
predictions in that year. This comparison 
is done for each year, in this case result-
ing in 24 comparisons between model 
predictions and observations.

Forecast accuracy

The results of the cross-validation 
analysis suggest that yields of some 
crops can be forecast with fairly high 
accuracy based on objective weather 
measurements (fig. 1; table 3). For 
many crops, the model forecasts cap-
tured close to or more than 50% of the 
variability in yield anomalies, mean-
ing that the selected weather variables 
explained over half of the variations 
observed in crop yields. Interestingly, 
the models did fairly well at forecast-
ing extremely low yields, such as al-
monds in 1995, oranges in 1991, and 
processing tomatoes and cotton in 1998 
(fig. 1). Almonds were particularly well 
modeled, with over 80% of variance 
captured by the model.

For a few crops, some of the power 
of the models came from knowing the 
previous year’s yield (table 3). For 

lies could be predicted before harvest 
based on monthly weather measure-
ments. Between two and four weather 
variables were selected for each crop, 
based on a combination of objective 
(good model accuracy) and subjective 
(physiologically reasonable) criteria 
(table 2). Because temperature and 
precipitation can have a nonlinear ef-
fect on yields, with yields maximized 
at intermediate values, we included 
the squared values of the weather 
variables in the regression model 
along with the variables themselves. 
For crops such as pistachios that 
are known to exhibit alternate bear-
ing, with years of high reproductive 
growth (high yields) alternating with 
years of high vegetative growth (low 
yields), yield anomalies from previ-
ous years were also included in the 
model. The total number of predictors 
— including the weather variables, 

TABLE 3. Summary of forecast accuracy and timing for crops evaluated

Crop R2cv* RMS† (%)
R2 using only 

previous yields‡ 

Fraction yrs. 
with forecast in 
correct direction

Last month 
used in 
forecast

Month of USDA 
forecast§

Peak harvest 
period

Months between 
forecast and 
harvest end

 
Grapes, wine 0.59 6.4 n/a 0.61 June July–August August– 

October
	 4

Lettuce 0.44 4.0 n/a 0.61 April Continuous 	 —
Almonds 0.81 7.8 0.17 0.73 February May (subjec-

tive); June 
(objective)

August– 
October

	 8

Strawberries 0.49 4.6 n/a 0.48 Previous  
November

April Continuous 	 —

Grapes, table 0.62 6.7 n/a 0.61 July July–August July– 
September

	 4

Hay 0.44 3.9 0.01 0.55 June August March– 
November

	 5

Oranges 0.69 8.8 0.22 0.68 May Navel:  
September;  

Valencia: March

November– 
May; May–Oct¶

	 6

Cotton 0.56 6.3 n/a 0.54 June June–August October–
December

	 6

Tomatoes, 
  processing

0.49 3.1 n/a 0.67 September May and  
September

June– 
November

	 2

Walnuts 0.43 7.3 0.06 0.57 February September September– 
November

	 9

Avocados 0.57 16.7 n/a 0.70 May Continuous 	 —
Pistachios 0.35 27.5 0.42 0.70 n/a August September– 

November
	 —

 
	 *	 R2cv: Cross-validated R2, the proportion of yield variance explained by the weather predictor variables.
	 †	 RMS: Root mean squared difference between forecast and observed yield, expressed as a percentage of average yield for 2000 to 2003.
	 ‡	 Only crops that exhibited alternate bearing were modeled with previous years’ yields.
	 §	 Available in California Crop Production Reports (www.nass.usda.gov/ca).
	 ¶	 The first period refers to navel orange harvest and the second to Valencia oranges.
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instance, including weather informa-
tion did not improve the pistachio 
model, where the biological pattern 
of alternate bearing seemed to domi-
nate effects on yield more than any 
weather signal. For all other crops, 
however, most or all of the predictive 
power came from weather variables.

As an alternative measure of fore-
cast skill, we considered the fraction 
of years in which the model correctly 
predicted the direction of yield ano-
moly (table 3). That is, we examined 
the frequency with which the model 
correctly predicted whether the yield 
would be above or below the trend. 
For a random forecast, this statistic 
has a distribution whose mean is 0.5 
and whose 90th percentile is 0.625 for 
a 24-year record (15 out of 24 years). 
Six of 12 crops had a forecast with 
skill greater than a random forecast 
using this criterion and significance 
level. Three others (wine grapes, table 
grapes and lettuce) fell slightly below 
this value.

Another criterion is the ability of 
forecasts to correctly predict unusually 
high or low yields, which is of particu-
lar interest to many forecast users. For 
each year, both the forecast and the 
actual yield were classified into one of 
four classes: below one standard devia-
tion (SD) from zero, between minus 
one SD and zero, between zero and 
one SD, and above one SD from zero. 
The first and fourth of these classes 
represent unusually low or high yields, 
respectively, and the middle two rep-
resent more moderately negative or 
positive years. We then computed the 
number of years when the forecast cor-
rectly predicted the yield class, was off 
by one class (in either direction), two 
classes or three.

Most crops did not exhibit any 
years when the forecast was off by 
more than one class. There were 
some exceptions; for example, let-
tuce yields in 1981 were forecast to 
be slightly negative but were actu-
ally very high (above one SD), and 
the reverse was true for hay in 1995. 
Overall, the forecasts were usually no 
more than one class off. Most of the 
cases discussed above — where the 
forecast predicted an anomaly in the 

wrong direction — cor-
responded to years with 
moderate yields, so the 
forecast was in fact not 
far from the observed 
yield. None of the crops 
exhibited any years with 
a forecast error of three 
classes.

To test the significance 
of these class accura-
cies, we performed 1,000 
simulations using two 
24-year, random-noise 
variables with a normal 
distribution. The average 
percentage of years with 
an error of zero, one, 
two or three classes was 
28%, 45%, 22% and 5%, 
respectively. Only 10% of 
the simulations had more 
than 40% of years (10 out 
of 24) classified correctly 
by chance, while all crops 
except strawberries, 
pistachios and walnuts 
met this criterion. This 
indicates that the forecast 
accuracies for most of the 
crops were statistically 
significant by this measure.

Importance of timing

Forecast timing can be as impor-
tant as accuracy. A “forecast” made 
after harvest, for example, would not 
be very valuable. Most of our models 
are capable of providing forecasts at 
least several months before the end of 
harvest, giving growers and others an 
opportunity to use the information to 
make decisions (table 3). For instance, 
our models for almonds and walnuts 
relied mainly on winter weather, 
while harvest does not begin until 
late summer.

We compared the times that our 
modeled yield predictions could be 
made available to growers with the 
times that currently available USDA 
forecasts are released (table 3). The 
two approaches were similar for wine 
grapes, table grapes and cotton, and 
existing forecasts were available  
4 months earlier for processing to-
matoes than our models. However, 

our models offer significant timing 
advantages over existing forecasts for 
almonds (3 to 4 months earlier than 
current forecasts), hay (2 months ear-
lier), strawberries (5 months earlier) 
and walnuts (7 months earlier).

Potential improvements

The current analysis was limited to 
only a dozen of the many crops grown 
in California and considered only state-
wide yields. We chose to aggregate 
several crops over different subcrop 
groupings, such as by combining va-
rieties of hay and lumping navel and 
Valencia oranges together. In addition, 
we used only monthly averages of three 
meteorological variables (number of 
frost days per month was also consid-
ered, but did not substantially improve 
any of the models).

These decisions reflect an explicit 
desire to test forecasts of state yields for 
major crops using commonly reported 
climatic data. However, data for many 
additional crops is currently available at 

It is well known that climate is an important factor influencing 
crop yields from year to year. Weather-based yield forecasts can 
be developed at lower cost than field surveys, and with longer 
lead times. Above, a weather monitoring station.
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both state and county levels, as are ad-
ditional weather measurements at time 
scales from hourly to monthly. Open 
questions are how well other crops can 
be modeled and whether different scales 
of analysis and meteorological indices 
would substantially improve forecast 
accuracies. Additional information such 
as remote sensing data might also aid 
predictions.

It is also possible that different model 
formulations could improve results. For 
example, in certain situations, process-
based models that rely on a mechanistic 
understanding of crop growth and yield 
may outperform statistical models such 
as the ones developed here, which are 
derived from observed relationships 
without explaining the mechanisms 
causing the relationships. Alternative 
statistical approaches to the multiple 
linear regression that we used may also 
improve accuracies. (For example, we 
tested the use of regression trees, which 
did not perform as well.) Whether these 
more sophisticated approaches offer 
worthwhile improvements can be tested 
only on a case-by-case basis, using ac-
tual observations and well-defined cri-
teria for an ideal forecast.

Weather promising for forecasts

The models developed in this study 
are promising for forecasting statewide 
crop yields based on weather measure-
ments. Because the significance levels 
for the models depend on specified 
performance criteria, the eventual value 
of such forecasts will depend on the 
acceptable types and magnitude of er-
rors for particular applications. The 
potential to forecast yields also depends 
on crop type. In general, almonds had 
significantly greater forecast accuracies 
than the other crops that we considered. 
Because almonds are California’s most 
valuable export crop and account for 
over 80% of global almond production 
(Almond Board of California 2004), such 
forecasts could be of great relevance to 
almond trade and management deci-
sions. For example, an almond grower 
could have used data on January rain-
fall and February nighttime tempera-
tures to correctly predict the low yield 
in early March 1995 and adjust cultural 
or marketing practices accordingly, well 

before the forecasts from USDA became 
available in May and June.

Although field-based surveys are 
likely to be more accurate than weather-
based forecasts, it is important to 
consider the tradeoff between forecast 
accuracy, cost and timing. The low cost 
and long lead times that are possible 
with weather-based models would 
likely provide a useful complement to 
existing approaches for crops that are 
currently surveyed. For crops that are 
not currently forecast by USDA, such 
as avocados, these models present an 
opportunity to develop forecasts with 
minimal cost by using existing weather 
measurements.
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Blue oak regeneration and survival

Blue oak trees are a valuable eco-
nomic and aesthetic resource in Cali-
fornia oak woodlands, which provide 
some of the richest wildlife habitat in 
the state. However, their current re-
generation rates may not be adequate 
to replace mortality, due to a variety 
of factors. In some regions, the regen-
eration of blue oak is limited by the 
ability of seedlings to survive long 
enough to become larger saplings. 
Two related, long-term studies by UC 
researchers examine the growth of 
blue oak seedlings and the effect of 
exclosures — which protect seedlings 
from livestock and wild-animal graz-
ing — on their survival.
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