It is not known how people typically become infected with Cryptosporidium. Drinking water was clearly the primary transmission vehicle in Milwaukee and in other major outbreaks of cryptosporidiosis. In general, however, the relative importance of various possible transmission routes is unclear. Food-related outbreaks have involved raw milk, possibly raw sausage, tripe, kefir and apple juice. During the Milwaukee outbreak, Cryptosporidium carried in tap water was suspected of contaminating salad dressings, dairy products and sausages, so the suspect foods were recalled.

Illness in humans

No drug is known to be effective in treating the infections and illnesses caused by these pathogens. E. coli O157:H7 and several other, less common strains of E. coli produce a toxin similar to Shiga toxin of Shigella dysenteriae and cause severe bloody diarrhea in humans. The infection can lead to kidney failure (hemolytic uremic syndrome) and death.

Shiga toxin–producing E. coli are notably more resistant to acid conditions (as in apple juice) than nonpathogenic strains of E. coli. E. coli O157:H7 can survive a pH as low as 2.0 under certain circumstances (Armstrong et al. 1996). The bacteria can multiply in foods and elsewhere in the environment under some conditions, as well as in the host's body. They can be killed by heat, chlorine or UV light. An internal temperature of 155°F during cooking is sufficient to kill more than 99% of organisms in ground beef (Bell et al. 1994).

The largest documented outbreak of foodborne illness caused by E. coli O157:H7 occurred in Japan in 1996, when more than 9,000 people became ill and at least 11 died. The source of the outbreak was never determined. Cryptosporidium infection causes watery diarrhea associated with abdominal cramping, nausea, vomiting and fever. In people with normal resistance, cryptosporidiosis is a self-limiting illness from which most patients recover after a few days or weeks. Those with compromised immune systems, however, develop...