BRIGGS and NUMAR—

two new barley varieties

for California

C. W. SCHALLER • J. D. PRATO

A L THOUGH MORE THAN a dozen varieties are grown in California, two barley varieties occupy the bulk of California's 1,500,000 acres in this crop, California Mariout, which is planted on 55 per cent of the acreage, is widely grown in the San Joaquin and Imperial Valleys, and is recommended for late planting in the Sacramento Valley. The second variety, Arivat, comprises about 18 per cent of the barley acreage. It is planted primarily in the Sacramento Valley, in the northern part of the San Joaquin Valley, and in coastal areas.

Briggs and Numar, developed by the Department of Agronomy, University of California, Davis, and released for commercial planting in the fall of 1967, were obtained from a cross between California Mariout and Arivat, backcrossed to California Mariout. The new varieties appear to combine the adaptive characteristics of both parental varieties and, in general, each is equal or superior to the best performing parent at various test locations throughout the state. Briggs has an adaptability similar to the variety Arivat, whereas Numar appears best adapted to areas currently producing California Mariout.

BRIGGS

Briggs is a short, stiff-strawed, medium early, six-rowed variety with semismooth awns. Kernels are white, with irregular, abortive to long, rachillas and long rachilla hairs. It is a pure line selection from the first backcross, Arivat x California Mariout. Its agronomic characteristics are summarized in table 1.

Briggs is essentially identical to the parental variety, Arivat, except that it is 3 inches shorter; it reaches maturity slightly earlier; it is more resistant to lodging; and has a higher yield.

At 28 locations, as summarized in table 2, Briggs has shown an 11 per cent yield superiority over Arivat. This difference has been fairly consistent over all locations with a slightly greater advantage from early plantings in the Sacramento Valley and from plantings in the Imperial Valley. In the Sacramento Valley this greater difference may be attributed to less lodging resulting from its better straw quality.

Briggs will be in direct competition with Arivat in the Valley locations, and may replace it completely. The relative performance of these two varieties in the coastal and mountain areas is not fully established, however.

In the San Joaquin Valley Briggs has been equal in yield to California Mariout. This has not been the case with Arivat.

Because of its wider adaptability Briggs may be used in the San Joaquin Valley—especially in those areas where growers have found it necessary to delay planting California Mariout to reduce losses from barley scald, a destructive foliar disease favored by early planting.

Briggs is fairly tolerant to scald. The protection provided by this degree of resistance during years when scald is extremely severe is illustrated in the comparative yield data from the three tests in the upper San Joaquin valley in 1967 (table 2). The 25 per cent superiority of Briggs over Numar can be attributed largely to the difference in their reactions to scald, since their performance at these locations would probably be similar under disease-free conditions.

Growers in the San Joaquin Valley may also attempt to capitalize on Briggs' greater straw strength, which should make harvesting easier. Briggs has shown a favorable response to late planting in the Sacramento Valley. This characteristic will largely eliminate the necessity of changing varieties when weather conditions cause a delay in planting.

NUMAR

Numar is a short, stiff-strawed, early maturing, six-rowed variety with semi-erect to erect heads. The awns are smooth. Kernels are large, and blue in color with a long-haired rachilla. Its disease reaction is similar to that of California Mariout; it is fairly tolerant to net blotch but susceptible to the other major diseases. Numar differs from California Mariout mainly in its improved straw strength, its smooth awns, its slightly later maturity, and its higher yield. The agronomic characteristics of Numar are shown in table 1. Numar is a pure line selection from the third backcross to California Mariout, Arivat x California Mariout.

Numar retains the same regional adaptability as the recurrent parental variety, California Mariout. Its major area of adaptation should be the San Joaquin and Imperial Valleys, and southern California. In the absence of scald it is competitive with its other parent, Arivat. However, in the Arivat areas, Briggs has performed better.

TABLE 1. COMPARISON OF AGRONOMIC CHARACTERISTICS OF FOUR BARLEY VARIETIES

<table>
<thead>
<tr>
<th>Variety</th>
<th>Color</th>
<th>Kernel weight</th>
<th>Bushel weight</th>
<th>Awns</th>
<th>Heading date (Davis)</th>
<th>Plant height</th>
<th>Straw strength*</th>
<th>Disease reaction†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calif. Mariout</td>
<td>Blue</td>
<td>43.3</td>
<td>44.2</td>
<td>Rough</td>
<td>April 22</td>
<td>30.7</td>
<td>3.3</td>
<td>S</td>
</tr>
<tr>
<td>Numar</td>
<td>Blue</td>
<td>42.0</td>
<td>44.3</td>
<td>Smooth</td>
<td>23</td>
<td>32.7</td>
<td>6.2</td>
<td>S</td>
</tr>
<tr>
<td>Briggs</td>
<td>White</td>
<td>40.8</td>
<td>45.4</td>
<td>Semismooth</td>
<td>25</td>
<td>33.1</td>
<td>7.6</td>
<td>S</td>
</tr>
<tr>
<td>Arivat</td>
<td>White</td>
<td>40.7</td>
<td>45.5</td>
<td>Semismooth</td>
<td>25</td>
<td>35.8</td>
<td>6.6</td>
<td>I</td>
</tr>
</tbody>
</table>

* Straw strength 1 = weak, 10 = stiff
† S = susceptible, I = intermediate
A new technique for determining composition of oilseeds before planting

D. M. Yermanos

A new technique involving the immersion of oilseeds in lipid solvents allows the extraction of enough oil for analytical purposes without destroying seed viability. This testing procedure makes it possible to reject seed samples with undesirable oil composition characteristics before planting.

A new method for determining oil quality that may be useful in oilseed selection experiments is under investigation at the Department of Agronomy, University of California, Riverside. It was found that seeds of flax, safflower, soybeans, sunflower and sesame retain their viability after they have been immersed in a lipid solvent for several days. During this immersion period a small amount of seed oil was extracted from the seed and later recovered after the solvent was evaporated. The small amount of oil obtained from the seed sample was sufficient for analysis by gas liquid chromatography. This analysis allowed selection of only those seed samples with the desired oil composition for planting.

This method is especially practical when the unit sampled is a single plant, head or pod in which several seeds are available. When single seeds need to be analyzed the method is quite effective with large seeds from such plants as sunflower, safflower, and soybeans. With smaller seeds such as sesame and flax it is not always possible to obtain enough oil for analytical purposes.

The following solvents were found satisfactory: petroleum ether, ether, benzene, chloroform, heptane, carbon tetrachloride and acetone. The first three solvents appeared to extract the greatest quantities of oil at room temperature. At least one drop of oil from any one of the above-mentioned crops could be extracted within 48 hours from 1 to 2 grams of seed without significant decrease in seed viability. Prolonged immersion of up to 40 days in petroleum ether did not decrease the viability of flax, sesame or safflower seed by more than 10 per cent. Ethyl alcohol (95 per cent) destroyed the viability of all these seeds within 6 to 12 hours, with the exception of sesame which remained viable after 2 days of soaking. Treated seed of each crop germinated within the same soil temperature limits as untreated seed. After germination, the oilseeds tested were transplanted to 6-inch pots and transferred to the greenhouse where they continued their normal development to maturity.

D. M. Yermanos is Associate Professor, Department of Agronomy, University of California, Riverside.