TEMPERATURE EFFECTS on vegetative growth and oil quality of FLAX

D. M. YERMANOS • J. R. GOODIN

Differential temperatures before flowering did affect vegetative development of flax in tests at Riverside, but did not cause changes in the quality of linseed oil produced. However, the same temperature treatments after flowering caused major changes in composition of the linseed oil.

Experiments in California have indicated that when flax and safflower are grown under cool climatic conditions in the coastal areas or in the Antelope Valley, they produce oil with a higher degree of unsaturation than when grown under higher temperatures at Davis or Riverside. Similar differences, but smaller in magnitude, have been observed between oil samples from early and late plantings of these crops even in the same location. Differences in temperature during the growing season have been considered the main cause of these changes in the chemical composition of the seed oil. Other environmental factors, like photoperiod, light intensity and light quality could also affect oil quality, however.

Experiments reported here were conducted at the University of California at Riverside to investigate the effects of temperature on the quality of linseed oil and to determine the stage of plant development at which these effects attain their maximum expression. Single plants were used from the Dakota and Cawnpore varieties of seed flax (neither is grown commercially in California) which differ widely in degree of unsaturation of their oil. Ten plants from each variety were grown in each of four growth chambers kept at constant temperatures of 50°, 60°, 70° and 80°F. Upon flower initiation, these plants were transferred from the growth chambers into a greenhouse where temperatures ranged between 60° and 80°F. Concurrently, 50 plants from each variety were grown in the same greenhouse. At flower initiation, 10 of these plants from each variety were moved into each of the four growth chambers, and the remaining 10 plants of each variety were left to mature in the greenhouse. All plants in the growth chambers were exposed to a uniform 16-hour light period of 1,500 foot candles intensity. The seed was harvested at maturity and fatty-acid analyses were conducted by gas-liquid chromatography.

Fatty-acid composition

The differential temperatures applied prior to flowering had no effect on composition of the oil of either variety as shown in the table. The temperatures applied after flowering, however, changed the fatty-acid composition of the oil quite drastically.

In the variety Dakota, the seed oil from the 50°F post-flowering treatment had the highest linolenic and the lowest oleic acid content. As post-flowering temperatures increased to 60°F, linolenic acid decreased from 57% to 41% and oleic acid increased from 18% to 34%. The other three major fatty acids remained at about the same level in all treatments.

In Cawnpore, the changes in oil composition could not be studied over the same range of post-flowering temperature because no seed was produced in the 70° and 80°F chambers. The oil from the 50° and 60°F treatment, however, had a significantly higher proportion of linolenic and a lower proportion of oleic acid than that from the greenhouse seed.

Vegetative growth

Pre-flowering temperatures caused significant differences in vegetative development among treatments, as shown in the photo. Plants grew most vigorously with normal leaf size and color, and the largest number of lateral branches in the 60°F chamber. As pre-flowering temperatures increased to 80°F, plants grew more spindly, with smaller and lighter-green leaves. Plants in the 50°F chamber showed the most striking difference, however. While plants in the other chambers flowered within 10 to 13 weeks from germination, it took twice as long for plants in the 50°F chamber to flower. At that stage, the 50°F plants were half as tall as the plants in the 60°F chamber and had few lateral branches and a rosette type of growth at the top due to short, telescoped internodes.

It is common knowledge that field plantings of flax, made several days or weeks apart, start blooming within very few days of each other. The fact that pre-flowering temperatures do not affect fatty

Dakota flax plants grown at 50°, 60° and 80°F constant pre-flowering temperatures.
acid composition means that a flax grower has considerable freedom in choosing the most suitable date of planting—without fearing that this might have adverse effects on oil quality.

D. M. Yermanos is Assistant Professor; and J. R. Goodin is Assistant Agronomist, Department of Agronomy, University of California, Riverside.

DONATIONS FOR AGRICULTURAL RESEARCH
Contributions to the University of California, Division of Agricultural Sciences

BERKELEY
United States Plywood Corporation $1,500.00
For the Forest Entomology Research Program
Various Donors
For research on the integrated control of grape pests
Arvin Grape Growers Association 200.00
Barr Ranch Company .. 200.00
Briden Bros. ... 100.00
W. B. Camp & Sons .. 200.00
El Rancho Farms ... 500.00
Elmo Vineyards, Inc. ... 500.00
Howard Frick Farm .. 200.00
Giumarra Vineyards Corp. .. 1,000.00
L. R. Hamilton, Inc. .. 500.00
H. M. Hollywood, Inc. .. 100.00
Kern County Land Company .. 500.00
Kern Valley Farms, Inc. .. 250.00
John J. Kovacich ... 500.00
Leonard Bros. .. 350.00
William Mesejian .. 500.00
Nash DeCamp Company .. 200.00
D. Papagni Fruit Co. .. 200.00
Jack and Marion Radovich .. 200.00
Salvich Bros. ... 100.00
Sadoian Bros., Inc. .. 200.00
Schenley Industries, Inc. ... 200.00
Seterakian & Co. ... 500.00
Tazza Ranches ... 200.00
Frank Ursini ... 100.00
Paul Ursini ... 100.00

DAVIS
American Cyanamid Company 4,000.00
To continue studies of Pimaricin effects in controlling food spoilage
American Potash Institute ... 1,500.00
For potassium studies in California deciduous orchards
Mildred Butler .. 100.00
For animal husbandry studies
California Cattlemen’s Association $ 10.00
For Animal Husbandry Memorial Fund in memory of Mark Lacey
Dr. George Creathaw ... one Teco Hog Squeeze
For animal research on the Armstrong Tract
Dr. J. M. and Mrs. R. E. Crompton registered Quarter Horse mare
For animal husbandry research
The Dow Chemical Company 60 cases of Saran Wrap squares
For research in various departments of the Agricultural Experiment Station
Frank Holt ... $ 20.00
For Markus Foundation Funds for research by the small animal clinic

Mr. and Mrs. J. P. Kappmeyer, Jr. $ 10.00
For emphysema research in memory of Clarence Bisworth
R. Morton Love .. journals
For the Agronomy Library
Leslie J. Nickels Trust ... $2,000.00
For research on soils and plant nutrition
Merck Sharp and Dohme
To support studies on the effect of corticoids in ruminants .. 2,500.00
To study thiabendazole in cattle field trials 2,000.00
Miller and Lux Incorporated .. 5,000.00
For vegetable crops research
Lee W. Roberts, Jr. ... 25.00
For emphysema research in memory of Clarence Bisworth
Mr. D. Paul Russell .. 100.00
To purchase books for the Entomology Library in memory of James R. Russell
Sacramento Dog Fanter’s Assn., Inc................................. 50.00
For the Markus Foundation Funds for research by the small animal clinic
San Joaquin Cherry Growers and Industries Foundation 500.00
To study cherry transit rot problems
Stauffer Chemical Company .. 2,000.00
To assist the research program in anthelmintic development
Tri-Cal Incorporated .. soil fumigant
For research in viticulture
Robert A. Wilson ... $ 10.00
For emphysema research in memory of Clarence Bisworth

RIVERSIDE
California—Arizona Citrus League 1,350.00
For part of rental of building for agricultural engineering research
California Citrus Pest Control Association 100.00
To help defray costs of 1964 Entomology Conference
Eli Lilly and Company ... 500.00
For herbicide studies with trifluralin and benomyl on vegetable crops
Emery Industries, Inc. (Western Division) 300.00
To study effect of surfactants on soil-water-plant relationships
Geigy Agricultural Chemicals 5 lbs iron chelate
For research on plant nutrition
Industry Committee on Citrus Additives and Pesticides $1,000.00
For research on citrus additives and pesticides

CALIFORNIA AGRICULTURE, APRIL, 1965