these trials was that the animals receiving barley free choice, in addition to the pasture, showed no signs of “yellow” fat in the carcasses at slaughter.

Under this system, steers consumed 10 to 15 pounds of barley per head plus enough pasture to gain between 2.25 and 2.75 pounds daily. Acceptable slaughter condition was attained in the usual 120 to 150 day feeding period. This system compensates for periods of short forage supply because the cattle merely increase barley consumption and maintain weight gains. This is particularly important toward the end of the pasture season.

J. L. Hall is Associate Specialist in Animal Husbandry and J. H. Meyer is Chairman of the Department of Animal Husbandry, University of California, Davis.

CONTAINER RESEARCH FOR VEGETABLE SEED

The results of the research on containers for vegetable seed show that, in order to maintain the vigor and germination that the seed possessed at harvest, it is necessary to dry the seed and pack it in moisture-resistant containers. Completely satisfactory containers are tin cans, pouches of aluminum foil laminated to polyester or polyethylene, or pouches of powdered aluminum in polyester. Containers almost as satisfactory and adequate for most storage conditions are aluminum laminated paper bags, thick polyethylene bags, and asphalt laminated paper bags.

In progress now is a study of why moisture content in seeds shortens the life of seeds. This problem is being approached by studying biochemical processes which change with aging, particularly loss in activity of enzymes.—James F. Harrington, Department of Vegetable Crops, University of California, Davis.

EFFECTS OF LIMITED SUPPLEMENTATION

<table>
<thead>
<tr>
<th>Days on feed</th>
<th>Amount of supplement fed</th>
<th>No. of animals</th>
<th>Initial wt., lb.</th>
<th>Average daily gain, lb.</th>
<th>Dressing per cent</th>
<th>Carcass grade: % of animals in grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>142</td>
<td>21</td>
<td>634</td>
<td>1.5</td>
<td>57.9</td>
<td>Good 5</td>
</tr>
<tr>
<td>5 lb per head per day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60.8</td>
<td>Standard 86</td>
</tr>
<tr>
<td></td>
<td>142</td>
<td>21</td>
<td>631</td>
<td>1.75</td>
<td></td>
<td>Utility 9</td>
</tr>
</tbody>
</table>

PART V OF A FIVE-PART SERIES

Ion Exchange Fertilizers and Ammoniated Organic Matter

O. R. LUNT · R. H. SCIARONI · A. M. KOFRANEK

The feasibility of supplying fertilizer minerals to plants by means of ion exchange resins has been known—and used for research purposes—for many years. Recently this technique has received attention as a commercial means of supplying nutrients safely and in large quantities for prolonged availability to high value plantings. Investigations have shown that the method can be very effective on commercial flower and nursery crops. It remains to be seen if this approach will be economically competitive with other controlled availability fertilizers being developed.

In principal, the exchange resins supply nutrients in much the same way as clay in soils. The adsorbed positively charged particles on the resins may be exchanged for other positive ions supplied by the plant root or by the irrigation water. Negatively charged particles such as phosphate and nitrate are supplied by exchange reactions to the roots of plants in the same manner as are the positive ions. The analogy with soil clays does not hold too well since clays have little anion exchange capacity.

The mixture of resins being used for fertilizer carriers was found to have a positive ion exchange capacity of 109 me (milli-equivalents) per 100 g (grams) and a negative ion exchange capacity of 233 me per 100 g. The positive ion exchange capacity of the mixture is about the same as most reactive clays. Leaching losses of nutrients from the fertilizer are relatively small if irrigation waters are low in salts and only moderate even when irrigation waters are fairly high in salts. The analysis of the fertilizer is reported to be 3.2–3.5–2.5 in N, P₂O₅, and K₂O.

Surface dressings of the exchange resin fertilizers are not very effective unless the irrigation water contains moderate concentrations of soluble salts. When the resin is in the root zone, the roots of plants have no difficulty in obtaining nutrients from the resins. In contrast to coated fertilizers and metal ammonium phosphates, exchange resin fertilizers can be stored in moist soils for long periods without loss of effectiveness or contributing to the salinity level of the soil. They can also be steam sterilized without apparently affecting subsequent availability of the fertilizer.

Application rates of the exchange resin fertilizers are usually expressed in terms of volume percentages to be used because bulk densities of soil mixes used for ornamentals vary greatly. Excellent quality potted chrysanthemums were produced with no further maintenance other than tap water during a three month period by incorporating exchange resin fertilizers at the rate of 10 per cent by volume. The soil mix used was highly susceptible to leaching. Several nursery plants including cyclamen, aphelandra, Philodendron selloum, shefflera and gloxinia (grown using a sub-irrigation technique) produced good to excellent growth over a seven week period when 8 per cent, by