is $2.00 per acre. At a rate of $22.82 for
one combine and operator plus a bankout
wagon, tractor and man, the benefit for
reduced harvest time is $4.79 per acre.
A benefit-less-cost figure is given below
for the two comparisons:

1. Plastic Levees vs. Three-year-old Soil Levees
 Total cost of plastic levees...$11.11 per acre
 Total annual cost of 3-year-old
 soil levees 1.88
 Added increment of cost due
 to plastic levees $9.23 per acre
 Benefits resulting from use of plastic levees:
 .28 hr. per acre saving in tillage
 operations $2.00
 .21 hr. per acre saving in harvest
 operations 4.79
 2.20 sack per acre increase in rice
 yield 9.90
 Total savings per acre........ $16.69
 Net additional earnings
 per acre = $16.69 - 9.23 = $7.46

2. Plastic Levees vs. New Soil Levees
 Total cost of plastic levees...$11.11 per acre
 Total cost of new soil levees... 3.80
 Added increment of cost due
 to plastic levees $7.31 per acre
 Benefits resulting from use of plastic levees:
 .21 hr. per acre saving in harvest
 operations $4.79
 1.30 sack per acre increase in
 rice yield 5.85
 Total savings per acre........ $10.64
 Net additional earnings
 per acre = $10.64 - 7.31 = $3.33

If growers receive extra income from
rice lands used for game hunting, the
weed growth is a benefit in favor of old
soil levees and should be deducted from
the benefits of plastic levees in figuring
additional earnings.

Since there are substantial net addi-
tional earnings per acre for the example
given, it is economically feasible to re-
place soil levees with plastic levees. It
must be kept in mind that the costs com-
pared depend on the length of levee per
acre, and the benefits of increased yield
are dependent on both length of levee per
acre and the average yield. A new calcu-
lation of costs and benefits must be made
from the tables and graphs for every field
where a change in levee construction practice is being considered. The only
foreseeable change in plastic levee eco-
nomics is that the costs may decrease as
far as further mechanization is accomplished—
and this is theoretically justified in plastic levees.

Davis C. Lewis is Junior Research Irrigation Engineer, University of California,
Davis; Verne H. Scott is Associate Professor of Irrigation and Associate Irrigation
Engineer, U.C., Davis; Kenneth E.
Mueller is Superintendent of the California
Cooperative Rice Research Foundation's Experiment Station at Biggs in
Butte County; Kenneth L. Viste is Research Agronomist, Crops Research Division,
Agricultural Research Service, United States Department of Agriculture,
Agronomy Department, U.C., Davis;
Alan F. Babb is Assistant Engineer in
Irrigation, U.C., Davis; Donald R. Fox
is Farm Advisor, Yuba County, University of California.

IMPROVING YIELDS IN SELF-POLLINATED CROPS

Some mixtures of pure-line varieties of self-pollinated crops show promise of
 improving yields and stabilizing productivity, as compared to the pure lines.

In the past half-century much of the
 improvement in yielding ability of crops
such as barley, wheat and beans has
 resulted from selecting pure-line varieties—
 consisting of a single genetic type.

These pure-line varieties are highly
 uniform for such features as size,
maturity, disease resistance, and quality
 factors that improve their marketability.
 Valuable as these pure-line varieties have
 been, there are theoretical reasons for
 believing that certain types of mixed
 populations may be still more useful in
 agriculture.

Investigations have been conducted to
test the theory that mixtures which pro-
 vide a controlled measure of genetic
diversity may not only yield more than a
single pure line but also perform more
 steadily year after year. Under test is the
 idea that individual plants may encounter
different environments not only within
 fields but also in different locations and
 years, and that different plant types may
 be able to exploit particular sites to their
 own particular advantage and to the ad-
 vantage of the entire population.

One experiment with lima beans con-
ducted at four locations over four years
 indicated that mixtures of pure lines were
 less likely to produce as high-yields—or
as low yields—in any one year as the best
 pure line included in the mixtures. The
 important point is that certain of the mix-
tures yielded more, when averaged over
 several years, than the best constituent
 pure line included in the mixture.—R. W.
 Allard, Professor of Agronomy and
 Agronomist, Department of Agronomy,
 University of California, Davis.

UREA FORM

Urea formaldehyde was the first major
synthetic nitrogen source developed
 for controlled availability. It has been
 commercially available for about a decade
 and primary uses have been with turf-
 grass and ornamentals. To obtain satisf-
actory responses, several aspects of its
 properties must be understood.

In the manufacture of urea formalde-
hyde these two components react to form
 polymers of various complexity. The ratio
of urea to formaldehyde, and other factors
affecting the reactions, influence the sus-
cceptibility of the product to mineralization—
 namely, conversion of the nitrogen
 to ammonium or nitrate forms. Commercial
 materials vary, particularly in the
 fraction of the total material that is
 readily available.

In commercial materials a substantial
 portion of the total nitrogen (25 per cent
or more) is cold-water soluble. This frac-
 tion is of low molecular weight and is
nitrified readily. The bulk of this fraction
nitrifies, when conditions are favorable,
within a four-week period. The remain-
 ing fraction which is relatively resistant
 to nitrification is mineralized at a much
 slower rate.

Under typical greenhouse soil condi-
 tions, about 6 to 7 per cent of the fraction
 relatively resistant to mineralization is
 converted to nitrate or ammonium each
 month. There is also some evidence that
 this rate tends to increase as the resistant
 fraction ages. From a given initial supply
of this type of nitrogen the yield of
 mineral nitrogen tends to remain more
 nearly uniform than would be expected.

The 6 to 7 per cent rate of mineraliza-
tion per month is some 50 times as fast
as natural soil humus is mineralized.
 Thus, nitrogen from “residual” urea-
 formaldehyde is much more available
 than nitrogen from soil humus.

T. G. BYRNE · O. R. LUNT

CALIFORNIA AGRICULTURE, MARCH, 1962