NEW SHORT-CHILLING
LATE MATURING
CLING VARIETY

NUEVO PEACH

J. W. LESLEY • M. M. WINSLOW

The Nuevo peach has yellow nonmelt-
ing flesh, sweet-flavored and of medium
acidity. It is intended for home or com-
mercial processing in areas where winter
chilling is insufficient for the standard va-
rieties. It was satisfactory in a commer-
cial canning test at Hemet, Riverside
County.

Nuevo originated as seedling No. 335-
10 from a cross made in 1947. Its pedi-
gree is complex. Among the earliest
ancestors are Elberta and Peento; later
crossing added Peak (cling) and SPI
32374. With proper thinning the fruit is
large and not inclined to preharvest drop.
In chilling requirement, Nuevo is similar
to Meadowlark and intermediate between
Elberta and Bonita.

The tree is vigorous and upright (based
on observations in southern California). Leaf glands are globose. Flowers are very
small and nonshowy, the petals often
wavy. The fruit is nearly spherical and
fairly symmetrical. The larger fruits
measure 3.1 inches in over-all length and
smaller fruits are 2.5 inches in length.
The cavity across the sutures is deep and
narrow, and the ventral suture is distinct.
The stem of a ripe fruit is about 0.25 inch
long.

The skin is tough and adheres to the
flesh; pubescence is very short. The sur-
face is yellow, but exposed fruits are
about 30 per cent dotted or splashed with
red. A few russet spots, which disfigure
the skin, occur in some localities. The
flesh is yellow, nonmelting and fine in tex-
ture, but next to the pit, and extending
outward about one-quarter inch, the flesh
color is red. The fruit ripens evenly and
keeps well. The pit is moderate in size—
2.6 x 2.0 x 1.8 inches in large fruits—
more grooved than pitted, and winged
on the ventral side.

Nuevo is recommended for processing
or preserves in localities such as the inter-
mediate valleys of southern California,
where winter chilling is insufficient for
standard processing varieties. It would
not yield regularly on the coastal plain.
It is less subject to spring frosts than the
very short-chilling varieties. At River-
side, Nuevo produced good crops in 8 of
the last 10 years and light crops in 2 years
with extremely mild winters. Inquiries
for budwood or for a limited amount of
nursery stock may be addressed to J. W.
Lesley, Department of Horticulture, Uni-
versity of California, Riverside.

TIMING MEDUSAHEAD BURNS

to destroy more seed
—save good grasses

A. H. MURPHY • W. C. LUSK

Control of medusahead (Elymus caput-
medusae) on rangeland is a major prob-
lem on many acres in California and
other western states. Where this grass
covers large areas and spraying or mow-
ing is not feasible, burning has been ex-
tensively used. The purpose of burning is
to destroy the seed in the head before it
shatters and is deposited on the ground.
Because medusahead is an annual plant it
depends on the current seed crop to per-
petuate itself. In many circumstances,
where burning is properly accomplished,
the medusahead stand will be reduced to
a very low percentage during the next
growing season.

Studies have shown that burning de-
strys more medusahead seed at certain
stages of development than at other times.

This burning also has an influence on
the germination of other range plants
growing in the same area. For example,
broadleaf filaree (Erodium botrys), fre-
quently becomes dominant in an area the
growing season following a grass burn. This probably occurs because filaree ma-
tures and shatters its seed early, usually
before burning, thus the seed is on or in
the ground where damage from fire is
low. Between the extremes of the earliest
seed maturity of filaree and the late seed
maturity of medusahead are the dates
when seed of other range plants will ma-
ture.

One of the more abundant and im-
portant range plants is soft chess (Bromus
mollis), a plant that is more desirable
than medusahead. Collection of seed from