Corrosion of Aluminum Pipe
corrosion of unprotected aluminum irrigation pipe can lead to serious problem under one or more of several conditions

Corrosion—especially of the pitting type—of aluminum irrigation pipe has been especially severe in some areas of California.

The pitting type of corrosion is associated mainly with the establishment—through differences in composition of the metal, through stress, or other factors—of a miniature galvanic cell within the pipe-water system.

Portable aluminum irrigation pipe actually is manufactured of an alloy—aluminum plus a small amount of some alloying element such as copper, zinc, magnesium, manganese, silicon—to produce pipe with a higher tensile strength and greater rigidity than pipe made of pure aluminum.

As different alloying processes and manner of fabrication impart different physical properties to the product, much of the aluminum pipe made immediately following World War II—fabricated from scrap metal—lacked uniformity of composition. However, because many aluminum products are now manufactured with a specific purpose in mind, it is fair to assume that irrigation pipe made in recent years is—in the main—better suited to the needs than were some of the earlier lots.

Some aluminum pipe used in one area has shown no marked deterioration, but when the same pipe was used in another district corrosion was excessive.

Injury to Pipe
Observations made by various people indicated that corrosion was normally of the pitting type, often affecting only a small percentage of the total metal.

Injury was most common along straight lines indicating a possible lack of uniformity in the extruded alloy, or from scratches made by a rough edged mandrel or from other causes. Also, damage was greater usually in the main line than in the secondary lines. Couplings were found to be most heavily corroded just inward from the gasket. Pitting of the pipe was initiated on the inside surface and progressed outward.

Pipe corrosion was noticeably greater with some irrigation waters than with others and distribution of fertilizers through the pipe lines often tended to accentuate the problem.

Factors in Corrosion
When aluminum is exposed to the air an oxide coating is formed which is a deterrent against further corrosion. This dull finish can be observed on the outside of aluminum pipe that has been exposed to the weather for a considerable period of time. However, several conditions may contribute to corrosion. The higher the oxygen content of the system, the higher the corrosion potential becomes. When admixtures of metals are in contact with each other and with water containing dissolved salts, an electrical current is produced. The metal which is least noble—relatively stable—will go into solution. Irrigation streams of high velocities tend to prevent the development of a protective oxide coating. When the oxide coating is not continuous the metal atoms in the unprotected areas of the pipe surfaces become ions and the metal will be dissolved.

Stress is also a factor in corrosion. High pumping heads can cause differences in electrical potentials between different parts of the metal, causing the equivalent of a miniature galvanic cell to be produced and anodic action results.

Temperature might be a secondary factor as chemical action would be more rapid under warm water conditions than with cold water.

Deposits Analyzed
A number of affected aluminum pipe systems were studied and chemical analyses made of the deposits found in the corrosion cavities. The deposits proved to be aluminum compounds formed in the breakdown of the pipe.

Spectrographic analyses of pipe samples showed the presence of alloying metals. Microscopic examinations were made of the corroded metal and of the salt present in the cavities.

In addition, test samples were placed in solutions of different composition and concentration. Highly basic solutions caused the decomposition of the metal at a rapid rate, and strongly acid solutions were corrosive. Agitation with air increased the rate of corrosion. Solutions in which chloride was the dominant anion—negative ion—were especially effective in preventing the formation of a protective film.

To test the relative effect of the vari-

Concluded on page 36

Corrosion often occurs in straight lines parallel to the axis of the pipe.
DESERTS
Continued from preceding page

field crops requiring less frequent irrigation on the fine textured soils. As a result of these conflicting requirements, and because of variations in the relationship between leaching during irrigation and the upward capillary movement of moisture between irrigations—with evaporation and salt accumulation—there is no direct relationship between tile spacing and soil texture. Frequently, more tile is required in light soils than in heavy soils.

Still another problem in tile design is the determination of what maximum flows might be expected. This information is needed so that large enough tile will be used, yet just large enough. Otherwise cost would be higher without better performance. Considerable information has been obtained on this subject in Coachella Valley, and arrangements are being made to obtain similar data elsewhere.

Along with drainage need there is the accompanying problem of removing excessive accumulations of salt. It has been found that there is no good alternative to the construction of essentially level basins with large borders on all sides, and to holding water to a depth of 6" or so on the surface for considerable periods of time. This leaches the salt downward, and to such depth that it will not later return to the surface.

Other plot work is under way to evaluate effects of deep plowing of a stratified soil on leachability, and when soil amendments are required to correct a sodic soil.

Also, work is under way which will provide better information on the mechanical characteristics of various types of tile, and how those characteristics affect drainage performance. In some instances the effectiveness of tile appears to be decreasing, and studies are in progress to determine why this is so, and how effectiveness can be restored. Fortunately, the problem does not appear to be important at this time.

So far as is known, almost every problem concerned with the drainage of irrigated desert lands of California is under study, has been studied, or will be studied soon.

Arthur F. Pillsbury is Professor of Irrigation and Engineering, University of California, Los Angeles.

Agencies cooperating in the drainage research in one or more of the areas include the Coachella Valley County Water District, the Imperial Valley Irrigation District, the United States Salinity Laboratory, the United States Bureau of Reclamation, the Soil Conservation Service, the United States Department of Agriculture Southwest Irrigation Field Station, the Agricultural Extension Service, the Eastern Municipal Water District, and the Palo Verde Irrigation District.

CORROSION
Continued from page 32

Continuous accumulations of salt. It has been to the construction of essentially level so on the surface for considerable peri-

The determination of what maximum being made to obtain similar data else-

wise cost would be higher without better

arrangements are

Coachella Valley, and arrangements are

performance. Considerable information

will be used, yet just large enough. Other-

ward, and to such depth that it will not

_other

cause of variations in the relationship be-

between irrigations—with evaporation

later return to the surface.

Still another problem in tile design is

the determination of what maximum

flows might be expected. This informa-

tion is needed so that large enough tile

will be used, yet just large enough. Other-

wise cost would be higher without better

performance. Considerable information

has been obtained on this subject in

Coachella Valley, and arrangements are

being made to obtain similar data else-

where.

Along with drainage need there is the

accompanying problem of removing ex-

cessive accumulations of salt. It has been

found that there is no good alternative

to the construction of essentially level

basins with large borders on all sides,

and to holding water to a depth of 6"

or so on the surface for considerable pe-

riods of time. This leaches the salt down-

ward, and to such depth that it will not

later return to the surface.

Other plot work is under way to evalu-

ate effects of deep plowing of a stratified

soil on leachability, and when soil amend-

ments are required to correct a sodic soil.

Also, work is under way which will

provide better information on the me-

chanical characteristics of various types

of tile, and how those characteristics af-

fect drainage performance. In some in-

stances the effectiveness of tile appears

to be decreasing, and studies are in pro-

gress to determine why this is so, and how

effectiveness can be restored. Fortu-

nately, the problem does not appear to be

important at this time.

So far as is known, almost every prob-
lem concerned with the drainage of irri-

gated desert lands of California is under

study, has been studied, or will be studied

soon.

Martin R. Huberty is Professor of Irriga-

tion and Engineering, University of California, Los

Angeles.

RIVER SEEPAGE
Continued from page 34

eight days during March 1956. A maxi-

mum discharge of 590 gallons per minute

was obtained for limited periods of time

until the pumping water level reached the

bottom of the suction pipe, 62' below the

ground surface.

Artesian Pressure Reduced

Operation of the well was quite effec-

tive in reducing the pressure in the arte-

sian aquifer as shown in the graph on

page 34. There was an immediate re-

sponse in water pressure both at the

start and stopping of pumping. While it

is encouraging to get a pressure relief in

the artesian aquifer, of primary impor-

tance is what happens in the surface soils

where the crops are to be grown. Records

obtained from a continuous water level

recorder on shallow observation well No.

3—located in the region of the poorest

drainage conditions—show that the

water table dropped 1.5' during the

pumping period. This is almost directly

proportional to the pressure relief re-
corded in the piezometers about the same
distance from the pumped well. The

downward trend of the water table of the

shallow well was reversed soon after the

pumped well stopped. In the next four
days the water table rose approximately

0.5' above the lowest level obtained dur-

ing the pumping test. There seems no

doubt that if the pumping test had been

continued for a longer period of time the

water level in the surface would have con-

tinued to decline. Responses to the pump-

ing in other areas in the field as observed

in surface observation wells were not as

immediate nor as pronounced as in ob-

servation well No. 3. For example, very

little change in the surface water levels

was recorded in some areas. This is ex-

plained by the fact that less permeable

layers lie between the surface soil and the

artesian aquifer so the relief in artesian

pressure was not felt immediately at the

surface of the soil because it takes quite

a while for the water to drain down out

of the surface layers.

The 8' well was successful in draining

an area to a distance of approximately

200' from the well, and a larger well

probably would have done a better job

of drainage. However, in this particular

case, it is not economical to operate a

pumped well for drainage because the

water must be pumped again—out of the

drainage ditches into the river.

Because the test drainage well was

feasible but not economical, a subsurface

drainage system was designed and in-
stalled. To develop the subsurface drain-

age system, soil permeability tests were

made by sinking a shallow auger hole be-

neath the soil surface to at least 1' below

the water table. After some initial flush-

ing of the hole it was pumped and the

rate of rise of water in the hole was

measured.

The rate of water rise is proportional
to the soil permeability and a suitable chart

can be used to calculate the soil permea-

bility from this rate of rise. The soil

permeability can be used to deter-

mine the depth and spacing of drains

required to drain an area.

Several auger hole tests were made on

the test farm and calculations indicated

that a spacing of 100' and an average
depth of 5' for drainage tile would be

adequate.

Although the subsurface drainage sys-
tem was installed on the farm it has not

been in operation during periods of high

water in the river so it has not been pos-

sible to judge the effectiveness of the

system.

James N. Luthin is Associate Professor of Irrigation, University of California, Davis.

Verne H. Scott is Associate Professor of Irrigation, University of California, Davis.