Double-Flowered Column Stocks

About 20% of the cost of field production of column stocks—Matthiola incana—as cut flowers is for seed because of the techniques required to obtain seed that will produce a satisfactory percentage of double flowers.

Double-flowered plants are completely sterile, so they must be obtained from eversporting single-flowered plants, so-called because their seed yields about 54% of doubles and 46% of eversporting singles. However, occasional noneversporting singles—plants which produce less than 54% of doubles—occur in eversporting varieties. When seed is increased from varieties containing such singles, the percentage of doubles will drop each year. Therefore, the percentage of doubles in a commercial variety can be depended on only if the variety is continually renewed from singles which have been progeny tested to ensure that they are of the eversporting type.

Eversporting plants will produce about 54% of doubles because—in these plants—one chromosome of a specific pair carries the gene for double flowers—S —while the other member of the pair carries the dominant gene for single flowers—s —and closely linked with it, a pollen lethal factor—l. When gametes are formed, only one chromosome from each pair enters a pollen grain or egg. Half of the eggs receive the single flower gene and the pollen lethal factor—Sl—and half receive the double flower gene—s. The same is true for the pollen. However, Sl pollen does not function owing to the effect of l. When the functional s pollen fertilizes the eggs, two types of plants are produced in about equal numbers: eversporting singles—Sl/s—and doubles—s/s. Some of the eggs carrying l do not function and, as a result, the proportion of doubles is about 54% rather than the expected 50%.

The real reason for the occurrence of noneversporting plants in eversporting lines has only recently been demonstrated. Basically it is because members of a chromosome pair may exchange segments by a process known as crossing-over. Clear evidence has been obtained to show that l occasionally becomes separated from S by such a process. When a gamete bearing the new S-chromosome fertilizes normal Sl and s gametes, exceptional single-flowered plants—S/s and S/s—are produced. These noneversporting plants are similar in appearance to eversporting plants, but S/S will produce only singles and S/s 25% of doubles while eversporting plants will produce 54% of doubles.

The infrequent noneversporting plants are the reason for the costly process of progeny testing required in the production of stock seed acceptable to the flower grower. When individual plants are progeny tested, the exceptional pure-single and 25%-double progenies can be discarded and only the 54%-double progenies used for seed increase. The pure-single progenies are easily recognized. The 25%-double progenies present a much greater problem because they necessitate actual counts of the plants in every progeny. If overlooked, such progenies will produce increasing proportions of pure singles in succeeding years.

Increase of Crossover Types

The noneversporting types produced by exceptional crossovers have a remarkable reproductive advantage over the desired eversporting plants. All or most of the plants that they produce are singles which are capable of setting seed while less than half of the plants produced by an eversporting individual are singles. Furthermore, successive generations from the noneversporting types—Sl/S and S/s—rapidly lose the lethal factor—l—and the doubleness gene—s—to consist predominantly of pure-single—S/S—plants. When the lethal is lost, the seed productivity of the plant increases about 50%. Since all eversporting plants carry the lethal, they are at a disadvantage in this respect also.

As a consequence, when seed of an eversporting variety is increased without progeny testing and selection, the occasional noneversporting plants produced by crossing-over are expected to increase rapidly at the expense of eversporting singles. As the proportion of eversporting singles declines, the proportion of doubles also declines. The expected rate of decline in percentage of doubles is approximately as shown in the accompanying graph when the frequency of crossing-over is 1% and when the increased productivity of plants without the lethal is 50%.

Concluded on page 16

Seed Yields of Eversporting Plants—Sl/s—which Carry a Pollen Lethal Factor Compared with Yields of Closely Related Plants without the Lethal—S/s or S/S

<table>
<thead>
<tr>
<th>Individual plant progenies from:</th>
<th>No. of plants per progeny</th>
<th>Mean seed yield (grams)</th>
<th>Plants with the lethal S/l</th>
<th>Plants without the lethal S/s or S/S</th>
<th>% increase with loss of lethal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two pairs of sister plants from a commercial variety</td>
<td>72</td>
<td>.65</td>
<td>.97</td>
<td>49.2</td>
<td></td>
</tr>
<tr>
<td>Four pairs of sister plants from controlled crosses</td>
<td>20</td>
<td>1.68</td>
<td>2.89</td>
<td>53.7</td>
<td></td>
</tr>
</tbody>
</table>

Plants with the same commercial variety: 5

1.20
1.84
53.3
CELLULOSIC MICROBIAL FERMENTATION, by Robert E. C. Tyrrell, Division of Agricultural Sciences, University of California, Berkeley.

NATURAL LEGUMINOUS FOURS, by G. F. Sweeney, Crop Science, University of California, Berkeley.

NEW PUBLICATIONS

—now ready for distribution—

Single copies of these publications—except the Manuals—or a catalogue of Agricultural Publications may be obtained without charge from the local office of the Farm Advisor or by addressing a request to: Agricultural Publications, 22 Giannini Hall, University of California, Berkeley 4.

GENERAL-CONTACT WEED KILLERS, by Alden S. Crafts, Cir. 447.

ORNAMENTAL PLANTS FOR LOW-ELEVATION DESERT AREAS OF SOUTHERN CALIFORNIA, by Mildred E. Mathias, Woodbridge Metcalf, Marion H. Kimball, Robert S. Ayers, Chester L. Hemstreet, and Dean D. Halsey, Bul. 750.

DONATIONS FOR AGRICULTURAL RESEARCH

Gifts to the University of California for research by the Division of Agricultural Sciences accepted in July 1955

BERKELEY

E. S. Browning Co. .. 100 gal. Larvacide
For research on sweet potato diseases
Corn Industries Research Foundation, Inc. $2,500.00
For research on effect of corn syrups in canning fruits
Diamond Black Leaf Company 96% 25% nicotine wettable powder
For alfalfa seed insect investigations
United Chemical Company 5 gal. scabicide 45% Homo
For studies on control of Verticillium wilt

DAVIS

American Cyanamid Co. $4,000.00
For field investigations of chlorotetracycline for control of respiratory diseases in fryers
Beer Sugar Development Foundation $5,000.00
For research on nematode plant relationships on sugar beets
California Planting Cotton Seed Distributors $7,500.00
For research on fertilizers in cotton
California Prune and Apricot Growers Association $500.00
Contribution toward purchase of experimental spray equipment for studies on control of diseases of deciduous fruit and nut trees
Canners League of California $2,043.93
For research on sweet potato diseases
Dewey & Almy Chemical Company $3,000.00
For studies on microbiology of pre-stuffed poultry
Di Giorgio Fruit Corporation................................. 14 boxes of Beauty plums
For deciduous fruit packing research
H. M. Holloway, Inc. 100 gal. gypsum
For treating high sodium water in lath house
A. Pinther ... $100.00
For research on barley
Western Condensing Company $3,000.00
For basic and applied research on utilization of whey, alfalfa and soybeans in poultry rations

LOS ANGELES

Monsanto Chemical Co. $500.00
For insecticide studies
Reynolds Metals Co. 2 gal. PVC solution CWS
For research on ornamental plants

RIVERSIDE

Geigy Agricultural Chemicals 200 gal. Chel 330 FE
For experiments with avocado trees
Stauffer Chemical Company 40 gal. Vapam
For use in field plot work for control of root rot of vegetables

STATEWIDE

L. H. Butcher Co. .. 50 gal. Duraset
For experimental use of lime beans to prevent bloom and pod drop during hot weather
Naugatuck Chemical Div. 30 gal. Duraset
For experimental use on lima beans to prevent bloom and pod drop during hot weather
Ringwood Chemical Corporation Panodrench 4
For use as soil drench in tests for damp-off control in seedling flats