Poinsettias for Holiday Trade

Henrietta Ecke variety produces high quality blooms on schedule when grown under high light intensity

Anton M. Kofranek

The Henrietta Ecke double-type poinsettia—the most popular poinsettia pot plant variety in southern California—has the undesirable characteristic of losing the center bracts just about the time the plants are to be sold for the holiday trade. However, experiments have shown that the bract abscission can be prevented at this critical time if the grower takes proper precautions.

The variety Henrietta Ecke sets flower buds between September 25 and October 4 in the Los Angeles area—about one week earlier than other poinsettia varieties. Therefore—because the rate of flower development is about the same for all varieties—the Henrietta Ecke flowers from December 5 to 10, which might be considered too early for Christmas sales. By the time the plants are ready for sale, the center bracts are overripe and tend to drop out. However, the public buys these unsightly plants because they know they will become excellent landscape material the following year.

Since poinsettias are short-day plants—flowering during the short days of winter only—it is easy to delay flowering by lengthening the day with artificial supplementary lighting.

In a series of experiments with the Henrietta Ecke variety, plants were lighted each night from September 15 until September 25 and 28, and until October 2, 4, and 6. On the later dates several plants were removed from long-day conditions—artificial lighting—and were then grown under natural daylength conditions until maturity. Those plants which were illuminated until October 4 or 6 produced a mature salable plant on December 15. Those which were illuminated only to September 28 or October 2 matured a few days in advance of what might be considered desirable for Christmas sale.

Another and probably more important reason for this bract abscission is caused by the low light intensity conditions under which the plants are usually grown in greenhouses. Some flower growers maintain very low light intensities—as low as 500- to 600-foot candles at noon of a bright day—in their greenhouses during the growing period. Under these lighting conditions, the center bracts of the plants become gnarled and do not develop properly. By extending the day with artificial supplementary lighting, the ripening of the center bracts is delayed and the plants remain attractive longer.

Left. A top view of a double Henrietta Ecke poinsettia, showing how the center bracts have abscised. This variety is very often sold in this condition. Right. The gnarled center bracts are distorted because this plant was grown under low light intensity conditions. These poorly developed bracts soon abscise.
CARROTS
Continued from page 4
were grown near San Jose for comparison as to composition.
The test roots were harvested at the proper stage for market. Two lots were grown in the same area; one was harvested in August and the other in February. Examination showed some variation in composition within the four varieties. Imperator seemed to be high in many of the nutrients. The differences in phosphorus, vitamin A, and riboflavin. The Nantes variety was low in phosphorus, vitamin A, and riboflavin. Improper seemed to be high in many of the nutrients. The differences between varieties as to waste in preparing the roots were not important.
The results of the tests reported here are a survey and indicate possible trends, since the experiments and plots were not replicated and therefore cannot be statistically analyzed.

M. Yamaguchi is Lecturer in Vegetable Crops, University of California, Davis.
Betty Robinson is Senior Laboratory Technician, University of California, Davis.
John H. MacGillivray is Professor of Vegetable Crops, UC Davis.
L. F. Clemente, J. W. Perdue, and Laura Morse, University of California, Davis, assisted in the experiments described in the foregoing article.

The foregoing article is based on the technical report Some Horticultural Aspects of the Food Value of Carrots by the same authors and published in the Proceedings of the American Society for Horticultural Science, 60:351–359, 1952.

BROILERS
Continued from page 6
broilers; and c, through their oversetting and understicking practices.
The first two of these factors have their principal influence on long-run changes in output; the last principally affects short-run changes. Except for these factors, hatcheries acted in the capacity of suppliers of chicks in accordance with the orders of their customers.

During the year of this study, California broiler hatcheries appeared to be neutral influence on short-run changes in output in that there was little evidence that they made the significant production decisions other than decisions to utilize their excess production capacity, to take advantage of changes in their customers' minds, and to avoid surpluses. The chicks hatched as a result of these decisions represented a small proportion of their total output.

Kenneth D. Naden is Assistant Professor of Agricultural Economics, University of California, Los Angeles.
George A. Jackson, Jr., was Assistant Specialist in Agricultural Economics, University of California, Los Angeles.

GROUND PEARL
Continued from page 5
festations have been encountered in heavy clay soils.
Since ground pearls have been found on grape roots 24" deep—which was the approximate extent of root penetration—it seems likely that they may be found even deeper.

Insect Described
The adult female of this pest has well-developed forelegs bearing strong claws. She produces an egg sac of white waxy filaments and deposits within it over 100 eggs, which are pinkish-white in color. The dead body of the female closes off the end of the egg sac. Hatching observed in 1954 began during the latter part of June and continued into late July. The crawlers are elongate, slender, and quite active. They attach themselves by means of their needlelike mouthparts to a fine rootlet and eventually secrete the hard, glassy covering characteristic of the intermediate pre-adult stages. It is from the appearance of these later immature stages—globular in shape and with a pearly, faintly yellowish-green color—that the common name ground pearl is derived. Other details of the life history of this potential pest to California grapes are at present unknown.

Additional studies of this subterranean scale insect are planned, including chemical control tests.

M. M. Barnes is Assistant Entomologist, University of California, Riverside.
C. R. Ash is Senior Laboratory Technician, University of California, Riverside.
A. S. Deal is Farm Advisor, Imperial County, University of California.