Farm Population of California

Farm people not exclusively occupied in agriculture but participate in the general industry of the state

Vorden Fuller

In California—the nation's top agricultural state—only 6% of the population live on farms, whereas in Iowa—the second-ranking agricultural state—30% live on farms.

In terms of its low proportion of farm people, California resembles industrial-metropolitan states like Massachusetts, Connecticut, New Jersey, and New York.

Nationally, farm population has been gradually declining—both numerically and proportionally—for several decades. California's farm population, however, continued to increase until about 1940, and—allowing for wartime disruptions—has tended to be stable since then. But the farm population has not kept pace with the state's rapidly expanding total population and has therefore declined from 15% in 1920 to 6% in 1950.

The significance of these facts is limited because farm-population is simply a count of the number of people who live on farms. Many people—including operators as well as hired laborers—whose principal occupation is agriculture, do not live on farms; while many people who do live on farms are gainfully occupied outside of agriculture.

At present, approximately one third of the gainfully employed farm population have nonagricultural occupations. For the past three decades—as shown in the following data from the census of 1930-1950—approximately two thirds of all gainfully employed farm women have been in nonagricultural occupations. The proportion of gainfully employed farm men in nonagricultural occupations is considerably smaller but is consistently increasing.

Gainfully Employed Farm Residents in Nonagricultural Occupations

<table>
<thead>
<tr>
<th>Year</th>
<th>Men</th>
<th>Women</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1930</td>
<td>13</td>
<td>62</td>
<td>18</td>
</tr>
<tr>
<td>1940</td>
<td>23</td>
<td>69</td>
<td>28</td>
</tr>
<tr>
<td>1950</td>
<td>28</td>
<td>67</td>
<td>34</td>
</tr>
</tbody>
</table>

The nonagricultural proportions are usually within the range of 20% to 25%. But in other major agricultural countries—like Los Angeles, Orange, San Bernardino, and San Diego—which are also centers of industry, the nonagricultural proportions are large, ranging from 43% to 48%.

Nonagricultural farm people are engaged in the whole range of California occupations. The bulk of the men are craftsmen and factory workers; the women are heavily concentrated in clerical and service occupations; and both men and women are employed in professional, technical, and managerial occupations in about the same ratios as is the entire state population. For example, 12% of nonagriculturally employed farm men are managers, officials, and proprietors of businesses, whereas the state total of nonagricultural occupations in this category is 14%.

Whether farm residents who have occupations outside of agriculture are found mainly on small part-time farms, the occupation census fails to determine, but some information on the subject is obtainable in the agriculture census. These data, which principally relate to the activities of farm operators—as shown in the table below—indicate that off-farm employment is by no means limited to the operators of part-time or residential farms. Commercial farm operators, too, extensively participate in off-farm economic activities, and although such activities most frequently occur on the smaller commercial farms, they occur to a significant extent on the larger farms as well.

<table>
<thead>
<tr>
<th>Commercial farms by type</th>
<th>Farm operators in each type working 100 days or more off the farm</th>
<th>Farm operators in each type with other family income exceeding value of agricultural products sold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Cash—grain</td>
<td>15.2</td>
<td>12.0</td>
</tr>
<tr>
<td>Cotton</td>
<td>19.3</td>
<td>12.6</td>
</tr>
<tr>
<td>Other field crop</td>
<td>10.1</td>
<td>9.9</td>
</tr>
<tr>
<td>Vegetable</td>
<td>12.2</td>
<td>10.0</td>
</tr>
<tr>
<td>Fruit and nut</td>
<td>25.7</td>
<td>23.3</td>
</tr>
<tr>
<td>Dairy</td>
<td>13.4</td>
<td>11.5</td>
</tr>
<tr>
<td>Poultry</td>
<td>20.3</td>
<td>25.2</td>
</tr>
<tr>
<td>Other livestock</td>
<td>28.4</td>
<td>19.5</td>
</tr>
<tr>
<td>General—primarily crop</td>
<td>16.0</td>
<td>12.6</td>
</tr>
<tr>
<td>General—primarily livestock</td>
<td>20.1</td>
<td>28.6</td>
</tr>
<tr>
<td>General—crop and livestock</td>
<td>16.2</td>
<td>18.4</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>16.2</td>
<td>15.7</td>
</tr>
</tbody>
</table>

In 1950, the census count of California farms was 137,168. Of these, 38,000 were

CALIFORNIA AGRICULTURE

Progress Reports of Agricultural Research, published monthly by the University of California Division of Agricultural Sciences.

William F. Calkins, Manager Agricultural Publications
W. G. Wilde, Editor and Manager California Agriculture

Articles published herein may be republished or reprinted provided no endorsement of a commercial product is stated or implied. Please credit: University of California Division of Agricultural Sciences. California Agriculture will be sent free upon request addressed to: Editor, California Agriculture, University of California, 22 Giannini Hall, Berkeley 4, California.

To simplify the information in California Agriculture it is sometimes necessary to use trade names of products or equipment. No endorsement of named products is intended nor is criticism implied of similar products which are not mentioned.
NEW PUBLICATIONS

—now ready for distribution—

Single copies of these publications—except the Manuals—or a catalogue of Agricultural Publications may be obtained without charge from the local office of the Farm Advisor or by addressing a request to: Agricultural Publications, 32 Giannini Hall, University of California, Berkeley 4.

MOSQUITO CONTROL ON THE FARM, by Stanley F. Bailey, Richard M. Bobart, and L. J. Booker, Cir. 439.

CONTOUR PLANTING AND IRRIGATING ON MODERATE-TO-STEEP SLOPES, by Lloyd N. Brown, Cir. 440.

CRISIS IN RICE? by George L. Mehren, Leaf, 34.

POPULATION

Continued from page 2

classified as part-time, institutional, or residential units, which leaves the number of commercial farms at 99,168. As the preceding table indicated, approximately one fifth of the operators of these commercial farm units have off-farm sources of income that exceed the gross income of the farm. Hence, it follows that farming is the principal activity of no more than 80,000 farms—approximately 60% of the state total—and that agriculture—on at least 57,000 farm units—is secondary to other activities and sources of income.

Moreover—as shown in the following table—farm operators' off-farm employment is on an uptrend which is not significantly affected by the currently prevailing level of economic activity.

<table>
<thead>
<tr>
<th>Farm Operators Working Off Their Farms, by Census Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days of off-farm work</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>%</td>
</tr>
<tr>
<td>1-49</td>
</tr>
<tr>
<td>50-99</td>
</tr>
<tr>
<td>100 and over</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

The evidence examined here shows that farm people are not exclusively occupied in agriculture but that, on the contrary, there is considerable diversity of occupations and economic activities within the gainfully employed population living on farms. Thus, farm people quite extensively participate in the general economy of the state.

Varden Fuller is Associate Professor of Agricultural Economics, University of California, Berkeley.

A second article in this series on the farm population of California will appear in the December issue of California Agriculture.

DISPOSAL

Continued from page 11

Experiments indicate that vibrating screens are effective for the removal of pomace solids from stillage before treatment of the wastes. However, no completely satisfactory device has been found for separation of the light and bulky sludge that results from chemical flocculation. Efficient removal of suspended solids from winery distillery wastes remains an important problem.

Biological treatment of the wastes after chemical and physical separation of the solids has been studied by several research workers. From the results of the investigations, it can only be concluded that complete disposal of concentrated winery distillery wastes by oxidation—is the conventional biological filter—difficult and must be accompanied by pretreatment.

The extreme fluctuation in the organic matter subject to decay—producing the offensive odors—contained in the raw stillage, combined with their seasonal, intermittent production, must be considered if a combined system for complete disposal is to be an economic solution to the problem of winery distillery waste.

Reese H. Vaughn is Professor of Food Technology, University of California, Davis.

George L. Marsh is Professor of Food Technology, University of California, Davis.

Part of the above-reported research was supported by the Wine Advisory Board.

DONATIONS FOR AGRICULTURAL RESEARCH

Gifts to the University of California for research by the Division of Agricultural Sciences accepted in September, 1954

BERKELEY
California Farm Bureau Federation .. $2,000.00
For continuing support of investigations of strawberry insect pests
Shell Chemical Corporation .. 10 gals. Dieldrex 15
For research on Q fever
Stauffer Chemical Company .. 5 gals. Endrin Emulsifiable Concentrate
For melon and tomato investigations
Stauffer Chemical Company .. $500.00
For research on mite control in apple and pear orchards

DAVIS
U. S. Public Health Service .. $3,689.00
For research on Q fever
Western Condensing Company .. $3,000.00
For investigating fundamental solubility characteristics of milk powders

LOS ANGELES
Paul Ecke ... 375 poinsettia cuttings
For floricultural research
Larvacide Products, Inc. .. 1 gal. Plantex-50
For floricultural research

RIVERSIDE
Matheson Chemical Corporation .. $5,000.00
For screening and development of soil fungicides project
Rohn & Haas Company .. $3,000.00
For study of control of plant diseases caused by soil fungi
Stauffer Chemical .. 100 gals. liquid fumigant N-869
For horticultural research

STATEWIDE
Tokay Marketing Agreement .. $3,000.00
For market study of fresh Tokay grapes

C A L I F O R N I A A G R I C U L T U R E , N O V E M B E R , 1 9 5 4 1 6