Wind Machine Tests in Citrus

frost protection studies in 1954 confirmed earlier findings next to be investigated in deciduous trees

F. A. Brooks, D. G. Rhoades, and A. S. Leonard

Tests of wind machines made in January and February, 1954, at the University of California Citrus Experiment Station, Riverside, confirmed and extended previous tests of multiple machines.

During investigations of wind machines started in 1947, three kinds of tests have been made: 1. Off-on-off tests which compared operating conditions with natural conditions within the orchard in a time sense. 2. The inside operating conditions compared with conditions observed outside the test area at the same time. 3. Comparison of heater system with wind-machine system on the same night and reversing the order of tests the following night.

There was further confirmation by interpreting responses on a heat-transfer basis, using direct measurements of sky radiation and of heat conduction into the ground, and the measured change of the temperature profile in the air drift due to mixing induced by the air jet.

Although the field tests are too variable to treat statistically to show the degree of reliability of interpretations, the results are averages of two to six tests each and well fortified by using the several test techniques and repeated comparison with commercial experience.

Firstly, tests were limited to calm, clear sky radiation conditions usually ending with light frost. Tests were not started until the temperature at tree level was 40°F or less and unless there was a typical cold air drift from an easterly direction.

Secondly, the instrumentation was extensive with the automatic recording of 65 temperatures, four heat-flow rates, 10 air velocities, and seven directions.

Thirdly, from a half to one hour was always allowed for transitions from an operating period to natural period. Then the readings taken about every four minutes were averaged—usually over one-hour periods—for each of the elements recorded.

The most important finding of 1954 resulted from the comparison of four small machines with four large machines, all on a 600' rectangular setting.

The diagram on this page is a plan view of 40 acres of mature citrus showing the distribution of the averaged response of six tests on four large machines, each with a thrust of 830 pounds using 70 bhp—brake horsepower. The result is very satisfactory and confirms last year's report that the two machines first receiving the cold air drift—averaging about 2.3 miles an hour—act nearly as isolated, single machines, but the pair 600' farther down drift affect each other strongly and maintain a belt between them of more than 3°F temperature rise when the air at 40' is 10°F warmer than that at 7'.

With each of the four machines reduced to 300 pounds thrust—corresponding to 19 bhp each—the average response of three tests, adjusted to 10°F inversion, is shown in the diagram on the next page. Even though the response of the two machines farthest up drift is nearly what is expected of independent single machines, the two machines down drift are positively influenced by the first two. This is evident in nearly 3°F response. In this location, the first two machines should have been closer together transversely to the drift. The observed protection area for 2°F is about 5½ acres per machine in multiple installation and figures 3½ bhp per acre, but this should be considered less than a minimum multiple installation for the orchard and location conditions at the Citrus Experiment Station. This confirms the minimum estimate made last year that 15 bhp machines may be spaced 400' apart transversely to the cold air drift and 550' apart in the line of drift.

Plot diagram of the average temperature response for four 830-pound thrust—70 bhp—wind machines in an inversion with the temperature at 40' 10°F warmer than at 7' above ground. This shows strong interaction between the two machines, No. 1 and No. 4, farthest down drift. All the machines were turning 180° in four minutes in the down drift direction and 180° in 1½ minutes against the drift. The machines are spaced 600' apart.
By similar reasoning, the four 70 bhp machines could have been spread farther apart for a minimum installation in this area. Possibly 700' x 900' could have been used if 2°F protection is considered adequate, as mentioned for the four 19 bhp machines. With 70 bhp machines, this would figure nearly five bhp per acre or up to nine rated horsepower for a gasoline engine.

Most growers need more than 2°F protection and wish to minimize the use of supplementary heaters in colder weather. Whether more horsepower, per machine and per acre, is cheaper than firing heaters more often, in support of small-powered wind machines, depends on the frequency and severity of frosts. Frosts naturally vary with each orchard—primarily because of location, age, velocity of cold airdrift, and ground condition.

The Turning Jet

To move a jet of air transversely to its axis—like smoke from a moving locomotive—introduces a shearing effect that greatly retards the outward flow. In such a case, instead of jet velocities decreasing in direct proportion to distance—as is true of stationary jets—the velocities in moving jets ultimately decrease approximately as the arithmetical square of the distance. Furthermore—if instead of moving transversely—the jet is turning, the retardation increases with distance so that the velocity decrease of the ultimate expanding ring would be as the cube of the distance.

The transition from a simple jet near the source to the slowly expanding ring at considerable distance is not known precisely, but photographs of air-stream models indicate the pattern as shown in the diagrammatic drawing at the top of this column.

To apply this theoretical study to actual orchards, a group of special tests were carried out with high-speed instruments. An additional portable tower, equipped with five anemometers—wind gauges—from 16' to 65', was installed at the test location.

If there were no irregularities in airdrift, the air blast from a 70 bhp machine turning 45° a minute would reach a station 400' from the tower in about 54 seconds. Time measurements in the orchard, however, showed large variations and a shortening of the time obvi-
WIND MACHINES

Continued from preceding page

ously caused by crossdrift. The extent of this erratic behavior in airdrift—March 5, 1954—is shown most clearly in the tables on this page, especially by the highly variable times of arrival of the blast at the 400' station. Sometimes the crossdrift bent the jet centerline so far that the jet appeared even before the machine directly faced the station—negative time values—and occasionally the blast was not felt at all.

A previous assumption was that a miss meant that the air jet passed by overhead, but the five anemometers up to 65' above the ground failed to show any velocity spur whenever there was a miss at 26'. This shows that occasional air eddies at Riverside may be strong enough to telescope a turning jet so that, for instance, only the weakest segment of the jet reaches the station with its velocity indistinguishable from natural airdrift. Because of the uncontrollable variability in natural conditions, model studies are to be undertaken next year to determine the relationships between temperature response in an orchard and the idealized jet pattern represented in the drawing on page 9.

The tests on frost protection by wind machine completed in 1954 pretty well define the results to be expected in citrus orchards near Riverside from single machine and from multiple installations of various power. The desirable variation of spacing distance with power is also fairly evident, so the main lack in the test data is now in variation of cold airdrift velocity and in variation of tree form and spacing. Therefore, next year's tests are planned for deciduous orchards.

F. A. Brooks is Agricultural Engineer, University of California, Davis.
D. G. Rhoades is Assistant Specialist in Agricultural Engineering, University of California, Davis.
A. S. Leonard is Lecturer in Agricultural Engineering, University of California, Davis.

The above article is the sixth annual report of progress in the study of wind machines for frost protection in citrus, published in California Agriculture.

LADINO

Continued from page 7

After about six to eight weeks the mature larva drops to the ground, closes the open end of the case, and completes its development. Those larvae which overwinter may feed again in the spring before pupating.

There are very few natural enemies of the clover case bearer. It is inferred that the hymenopterous wasp—Bracon pygmaeus (Prov.)—will attack it, but none have been reared in California.

Chemical control will also be very difficult because the materials which can be applied to the blooming crop without harming pollinators do not seem to be effective against the case bearer.

Cultural practices seem to be the most important controls. Seed fields should be pastured close in the spring, and the start of the seed crop delayed until May 15. In harvesting, the chaff should not be blown back into the field but should be carried away to be fed or burned. The trash and cleanings at the seed mills do not seem to create any hazard.

Ray F. Smith is Assistant Professor of Entomology, University of California, Berkeley.
Lloyd Andrea is Research Assistant in Entomology and Parasitology, University of California, Berkeley.

The above progress report is based on Research Project No. 1330.

10