Avocado seedlings are very sensitive to high sodium or potassium concentrations in the soil, according to observations obtained in studies on the effects of various soil chemical properties on the growth of avocado seedlings.

Seedlings of the Topa Topa variety of avocado were used in the study—planted in three-gallon containers of Yolo loam soil. The plants were fertilized by plant roots and are easily replaced by treatment with distilled water. The process gave the desired cations as carbonates or bicarbonates. Others naturally low in bases may become acid through repeated application of acidifying fertilizers without corrective gypsum or lime applications.

In these studies, excess carbonates and exchangeable bases were removed from the Yolo loam by leaching with acid. Excess salts were removed by leaching with distilled water. The process gave a soil containing mostly hydrogen in the exchange complex. Depending upon the treatment, all or some of the exchangeable hydrogen was replaced by adding the desired cations as carbonates or bicarbonates. The treated soil was moistened and incubated for four months. At this time the dry weights and chemical composition of tops and roots were obtained.

Seedling Growth

The seedlings grew best at concentrations of 4% to 6% exchangeable potassium and in soils with very low sodium percentages. Growth was not significantly different in an acid soil, a base saturated soil, and a soil containing up to 2% excess lime. Potassium at 13% and sodium at 4% to 7% reduced growth. Leaves of the seedlings in the 13% potassium soils had a slight potassium burn while those in the 25% soils were moderately to severely burned. The potassium burn was characterized by a scorching or necrosis of the edges and tip of the leaves.

As little as 4% exchangeable sodium produced a moderate sodium burn on the leaves of two out of five seedlings. Sodium at 7% caused moderate to severe necrosis of the edges and tip of the leaves.

Concluded on page 12

Growth of Avocado Seedlings

individual plants vary in susceptibility to injury by concentrations of sodium or potassium in soil

Effect of Various Exchangeable Cation Ratios on Growth of Avocado Seedlings in Yolo Loam Soil

<table>
<thead>
<tr>
<th>Series</th>
<th>Treatment number</th>
<th>Exchangeable cations</th>
<th>Calcium</th>
<th>Magnesium</th>
<th>Potassium</th>
<th>Sodium</th>
<th>Hydrogen</th>
<th>pH of soil</th>
<th>Dry wt. ger. pot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium</td>
<td>1</td>
<td>2.9</td>
<td>2.6</td>
<td>0.38</td>
<td>1.1</td>
<td>0.02</td>
<td>0.21</td>
<td>0.30</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>2.9</td>
<td>2.6</td>
<td>0.38</td>
<td>1.1</td>
<td>0.02</td>
<td>0.21</td>
<td>0.30</td>
<td>0.25</td>
<td>0.14</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>2.3</td>
<td>0.62</td>
<td>3.8</td>
<td>0.05</td>
<td>0.18</td>
<td>0.26</td>
<td>0.30</td>
<td>0.17</td>
</tr>
<tr>
<td>4</td>
<td>3.3</td>
<td>0.8</td>
<td>0.48</td>
<td>3.5</td>
<td>0.06</td>
<td>0.23</td>
<td>0.31</td>
<td>0.15</td>
<td>0.22</td>
</tr>
<tr>
<td>Sodium</td>
<td>1</td>
<td>2.9</td>
<td>2.6</td>
<td>0.38</td>
<td>1.1</td>
<td>0.02</td>
<td>0.21</td>
<td>0.30</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>2.9</td>
<td>2.6</td>
<td>0.38</td>
<td>1.1</td>
<td>0.02</td>
<td>0.21</td>
<td>0.30</td>
<td>0.25</td>
<td>0.14</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>2.3</td>
<td>0.62</td>
<td>3.8</td>
<td>0.05</td>
<td>0.18</td>
<td>0.26</td>
<td>0.30</td>
<td>0.17</td>
</tr>
<tr>
<td>4</td>
<td>3.3</td>
<td>0.8</td>
<td>0.48</td>
<td>3.5</td>
<td>0.06</td>
<td>0.23</td>
<td>0.31</td>
<td>0.15</td>
<td>0.22</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>1</td>
<td>2.9</td>
<td>2.6</td>
<td>0.38</td>
<td>1.1</td>
<td>0.02</td>
<td>0.21</td>
<td>0.30</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>2.9</td>
<td>2.6</td>
<td>0.38</td>
<td>1.1</td>
<td>0.02</td>
<td>0.21</td>
<td>0.30</td>
<td>0.25</td>
<td>0.14</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>2.3</td>
<td>0.62</td>
<td>3.8</td>
<td>0.05</td>
<td>0.18</td>
<td>0.26</td>
<td>0.30</td>
<td>0.17</td>
</tr>
<tr>
<td>4</td>
<td>3.3</td>
<td>0.8</td>
<td>0.48</td>
<td>3.5</td>
<td>0.06</td>
<td>0.23</td>
<td>0.31</td>
<td>0.15</td>
<td>0.22</td>
</tr>
<tr>
<td>Original soil</td>
<td>15</td>
<td>2.6</td>
<td>1.9</td>
<td>0.68</td>
<td>2.4</td>
<td>0.02</td>
<td>0.17</td>
<td>0.27</td>
<td>0.19</td>
</tr>
</tbody>
</table>

* Three out of 5 plants died. The other two remained alive but did not grow.

J. P. Martin and F. T. Bingham
row, long-petioled leaves. Discarding the Slender discards most of the singles. The Slender trisomic has the pair of whole chromosomes that normally determines singleness and doubleness, plus an extra chromosome—about half as long—that also carries either the S or the s factor.

Genetic Features

Several main features of the usual genetic behavior of Slender trisomics seem well established. The extra chromosome reduces the chances of survival of the germ cells and embryos that receive it, thus decreasing the proportion of trisomic and—especially—of tetrasomic. Stock seed is now available at wholesale under a trade name which designates races in which the commercial seed is obtained from trisomic Slender plants. All plants can be grown without sorting, with the probability of a low proportion of singles. Another method discards the weaker, smaller-leaved seedlings; this tends to reduce the proportion of singles. If this sorting is done when the plants have several leaves, and those with narrow, long-petioled leaves are thrown away, most of the singles—and the occasional rather weak Slender doubles—may be eliminated. Besides the narrow-leaved trisomics there may also be a few weak little tetrasomic Slenders, with very narrow leaves, to be discarded.

Without selection, the great majority of the plants should have double flowers. If the second—seedling-selection—method is carefully followed nearly all the plants will be doubles.

Howard B. Frost is Associate Plant Breeder, Emeritus, University of California, Riverside. Margaret Mann Lesley is Research Associate, University of California, Riverside.

The above progress report is based on Research Project No. 263.

AVOCADO

Continued from page 7

Leaf injury on all five seedlings. Sodium at 14% killed three seedlings and prevented the growth of two, while 26% sodium killed all the plants.

Chemical Composition

Leaves of seedlings showing slight to moderate potassium burn contained 3.8% potassium; severely burned leaves contained 5.5%. Leaves of seedlings with slight sodium burn patterns contained 26% sodium while moderate to severe patterns were associated with 50% leaf sodium. Two plants which remained alive—but did not grow—in the 14% sodium soil contained only .33% leaf sodium. Leaf calcium and magnesium were not significantly affected by 14% exchangeable potassium or sodium but were slightly reduced by 25% potassium.

Increasing potassium and sodium percentages increased the manganese content of the leaves while excess lime decreased it. The chemical analysis data for manganese were in agreement with visual observations. The leaves of the seedlings in treatments which contained excess lime, showed slight manganese deficiency patterns, while the seedlings in the potassium and sodium series did not show deficiency patterns.

Tests with other plants have shown that growth of tomatoes, barley, vetch, radishes, lettuce, onions, alfalfa, and carrots is not reduced until concentrations of 30% to 40% or more exchangeable potassium and 20% to 40% sodium are attained. Higher concentrations are necessary for leaf burn.

Studies with citrus plants indicate that, in general, they are slightly more tolerant to these cations than were the Topa Topa seedlings. For example, 14% potassium caused leaf burn of the avocados but did not damage sweet or sour orange seedling leaves. Recently, a citrus orchard in Orange County which had been interplanted to avocados was observed to show no burn of citrus leaves but leaves of many of the avocado trees exhibited typical sodium burn patterns.

These studies indicate that soil sodium percentage considered low for most plants may be high for avocados. The sodium is quickly adsorbed. Sodium burn patterns began to appear within 10 days to two weeks after planting.

The rather marked variation in severity of sodium or potassium injury indicates that individual plants vary in their susceptibility to sodium injury.

J. P. Martin is Associate Chemist, University of California, Riverside.

F. T. Bingham is Junior Chemist, University of California, Riverside.

J. O. Ervin assisted in laboratory and greenhouse work reported in this article.

CITRUS SEED

Continued from page 8

The lower picture in columns two and three on page 8 shows the effect of 2,4-D on the germination and seedling growth of Koethen sweet orange seed when the two lots of seed were soaked overnight. A fair appraisal on November 16, 1953, when the photograph was taken, showed Lot C as having 37% healthy seedlings compared with 76% for Lot D which was 2,4-D treated. In addition, Lot C had 8% surviving albino seedlings and Lot D had 11%.

Other studies with large citrus seedlings have shown the seedling growth to be increased—even when the seed no longer remains attached to the plant—when very dilute concentrations of 2,4-D occur in the nutrient solution applied to soil cultures.

A. R. C. Hans is Plant Physiologist, University of California, Riverside.

Joseph N. Brusca is Senior Laboratory Technician, University of California, Riverside.

The above progress report is based on Research Project No. 1088.