A breakdown of the rind and the accompanying drop of Valencia oranges from trees in Orange County during the summers of 1926, 1931, and 1934, was noted to be noticeably broken by some external agency, the cause of which, however, could not be determined and may perhaps be ascribed to the formation of a slight swelling of the oil gland at the skin and stem half of navel oranges. Such swellings, it is believed, are initiated by the collapse of one oil gland. The spots seemed to aggravate the condition.

Rind Spot And Drop Of Valencia Oranges Investigated In Effort To Determine Cause And Cure

L. J. Kloet, W. S. Steward and R. J. Bongardner

Rind spot is a disease of the fruit which causes them to darken and enlarge further, thus forming a brownish spot about the size of a bean. Such lesions may also be very noticeable on the orange tree in the fall of the season.

Canoes Considered

In a discussion of the causes of Valencia rind spot, it is assumed that some weakness in the rind of the Valencia orange, due to an injury, is thereby produced to the actual breakdown and drop in the fruit.

Similar effects sometimes follow mechanical injury such as those from insects, wind, thorn pricks, etc. The leafy end of the Valencia orange sometimes leaves a form of spot on the stem half of navel oranges.

During the last two years, it is pertinent to note that only two or three percent of the Valencia oranges were affected by rind spot and drop.

Weather Factors

Depending on climatic conditions during the blooming or seeding period of the Valencia rind spot, the fruit is more susceptible to injury from the Tortrix worm, or other woI1TIs.

The Buttermaker usually attempts to standardize his product to a shade that is equally attractive to both the harmless vegetable or synthetic dye. The carotene attempts have been only partially successful due to inaccessibility, neglect, or recognition of the limited importance of color in the feeding stuffs of the cow. The seasonal variations in the carotene content of the milk has been shown to be greater in the fall than in the spring or summer.

The natural color in butter is mainly carotene which has great nutritional significance and is the most stable of the usual butter colors. The natural color in butter is caused by the presence of yellow carotene, or provitamin A, which is converted by intestinal bacteria to vitamin A.

The buttermaker usually attempts to standardize his product to a shade that is equally attractive to both the harmless vegetable or synthetic dye. The carotene attempts have been only partially successful due to inaccessibility, neglect, or recognition of the limited importance of color in the feeding stuffs of the cow. The seasonal variations in the carotene content of the milk has been shown to be greater in the fall than in the spring or summer.

The natural color in butter is mainly carotene which has great nutritional significance and is the most stable of the usual butter colors. The natural color in butter is caused by the presence of yellow carotene, or provitamin A, which is converted by intestinal bacteria to vitamin A.

The buttermaker usually attempts to standardize his product to a shade that is equally attractive to both the harmless vegetable or synthetic dye. The carotene attempts have been only partially successful due to inaccessibility, neglect, or recognition of the limited importance of color in the feeding stuffs of the cow. The seasonal variations in the carotene content of the milk has been shown to be greater in the fall than in the spring or summer.

The natural color in butter is mainly carotene which has great nutritional significance and is the most stable of the usual butter colors. The natural color in butter is caused by the presence of yellow carotene, or provitamin A, which is converted by intestinal bacteria to vitamin A.

The buttermaker usually attempts to standardize his product to a shade that is equally attractive to both the harmless vegetable or synthetic dye. The carotene attempts have been only partially successful due to inaccessibility, neglect, or recognition of the limited importance of color in the feeding stuffs of the cow. The seasonal variations in the carotene content of the milk has been shown to be greater in the fall than in the spring or summer.

The natural color in butter is mainly carotene which has great nutritional significance and is the most stable of the usual butter colors. The natural color in butter is caused by the presence of yellow carotene, or provitamin A, which is converted by intestinal bacteria to vitamin A.

The buttermaker usually attempts to standardize his product to a shade that is equally attractive to both the harmless vegetable or synthetic dye. The carotene attempts have been only partially successful due to inaccessibility, neglect, or recognition of the limited importance of color in the feeding stuffs of the cow. The seasonal variations in the carotene content of the milk has been shown to be greater in the fall than in the spring or summer.

The natural color in butter is mainly carotene which has great nutritional significance and is the most stable of the usual butter colors. The natural color in butter is caused by the presence of yellow carotene, or provitamin A, which is converted by intestinal bacteria to vitamin A.