Storage, Shipping And Precooling Of Stone Fruits

P. S. H. S. W.

The ability to hold stone fruits for even a week or ten days makes it possible for the canner or processor at the peak of the harvest season to receive fruit faster than it can be processed. Most stone fruits will, even under best storage conditions, soon show some deterioration, with the amount and rapidity depending largely on the condition of the fruit when received.

Storage Temperature

The storage temperature and humidity generally recommended for peaches, apricots, plums and cherries is 30° to 31° F, with a relative humidity of 80–85%. As a number of weeks in experimentally-stored storage at 32° the flesh of well-matured peaches frequently became cloudy and the pulp remained normal or else reddening was materially retarded. It has been reported that wine-purple did not occur, peaches stored at 30° and ripened at 50° were often of distinctly better quality than those stored at 32°.

With all stone fruits, unless it be cheese, storage temperatures between 30° and 40° for any length of time are proven unreliable.

One of the first signs of deterioration in peaches, nectarines and apricots is a loss of flavor—followed perhaps by a discoloration of the flesh. This loss of flavor may be noticeable even after a period of ten days.

In some of our experimental lots of peaches, quality still existed after a storage period of four weeks at 31°. Freshness was retained for 11 days. Marked discoloration occurred very soon after the fruit became ripe. After holding for six weeks in storage all samples, even though of good external appearance, were of poor quality.

Apricots

Well-maintained apricots in a few instances have been laid with fine appearance for eight weeks. Observations, however, on approximately 250 samples have shown that they generally deteriorated and that 12% developed some browning around the pit during four weeks in storage. Little difference was noted in this regard between samples held at 30° and 35°.

Comparative Tests On Plowed And Unplowed Soil For Sugar Beet Seed-bed Preparation

L. D. Freuten

Partial view of the plowed and unplowed plots in the seed-bed preparation experiment. The large areas indicate the unplowed plots, which have been plowed, later cultivated to finely pulverized seed-bed. The light areas indicate the unplowed plots, which have been plowed but were stirred to the depth of four to two inches with a spring-tooth harrow or disk to kill all growing weeds before the crop was planted.

Growers of Avocados And Citrus Fruits

J. B. Biale

In areas where crusting of the soil may give greater yield to the following crop of non-legumes.

Field Trials

As sulfur alone could not be expected to increase the yield of legumes in every location throughout the state, a number of exploratory trials to determine local deficiencies by the response obtained, were established in 20 representative counties.

It is known that a readily soluble superphosphate supplying phosphorus, potassium chlorid, calcium, and ammonium sulfate were all combinations.

Fertilized Legumes Aid Following Crop Of Non-legumes

John P. Conrad

Nitrogen containing no other nitrogen may increase the growth of legumes such as clover, vetch, and peas, which contain relatively high amounts of nitrogen. This is possible because bacteria contained in nodules on the roots of legumes fix the free nitrogen, which is then available to most other plants.

The relationship of fixed nitrogen supplied by the decay of the residues of legumes to other crops may give greater yield to the following crop of non-legumes.

Until recently the possible magnitudes of the increases in yields of legumes and of the forage-legumes' non-legumes for many agricultural conditions in California had not been recognized. Nor had the particular fertilizing advantages of the legumes been figured nor the legumes best suited to give maximum growth of the following crop of non-legumes for each locally determined.

Comparative Tests On Plowed And Unplowed Soil For Sugar Beet Seed-bed Preparation

L. D. Freuten

Partial view of the plowed and unplowed plots in the seed-bed preparation experiment. The large areas indicate the unplowed plots, which have been plowed, later cultivated to finely pulverized seed-bed. The light areas indicate the unplowed plots, which have been plowed but were stirred to the depth of four to two inches with a spring-tooth harrow or disk to kill all growing weeds before the crop was planted.

Growers of Avocados And Citrus Fruits

J. B. Biale

In areas where crusting of the soil may give greater yield to the following crop of non-legumes.

Field Trials

As sulfur alone could not be expected to increase the yield of legumes in every location throughout the state, a number of exploratory trials to determine local deficiencies by the response obtained, were established in 20 representative counties.

It is known that a readily soluble superphosphate supplying phosphorus, potassium chlorid, calcium, and ammonium sulfate were all combinations.

Fertilized Legumes Aid Following Crop Of Non-legumes

John P. Conrad

Nitrogen containing no other nitrogen may increase the growth of legumes such as clover, vetch, and peas, which contain relatively high amounts of nitrogen. This is possible because bacteria contained in nodules on the roots of legumes fix the free nitrogen, which is then available to most other plants.

The relationship of fixed nitrogen supplied by the decay of the residues of legumes to other crops may give greater yield to the following crop of non-legumes.

Until recently the possible magnitudes of the increases in yields of legumes and of the forage-legumes' non-legumes for many agricultural conditions in California had not been recognized. Nor had the particular fertilizing advantages of the legumes been figured nor the legumes best suited to give maximum growth of the following crop of non-legumes for each locally determined.

Comparative Tests On Plowed And Unplowed Soil For Sugar Beet Seed-bed Preparation

L. D. Freuten

Partial view of the plowed and unplowed plots in the seed-bed preparation experiment. The large areas indicate the unplowed plots, which have been plowed, later cultivated to finely pulverized seed-bed. The light areas indicate the unplowed plots, which have been plowed but were stirred to the depth of four to two inches with a spring-tooth harrow or disk to kill all growing weeds before the crop was planted.

Growers of Avocados And Citrus Fruits

J. B. Biale

In areas where crusting of the soil may give greater yield to the following crop of non-legumes.
Poultry Nutrition Research Proves Helpful To Humans

(Continued from page 3)

The fact that a sufficient amount of this vitamin in the diet is required by animals was indicated by the results of the experiments. The color test, long known as the thiamine test, failed to give a positive result.

Folic Acid

Believed to be the only vitamin discovered for which folic acid was isolated, identified and later synthesized, this vitamin is used commercially in various feeds. One of the scientists participating in the research was Mr. L. E. E. Rickard, a former member of the staff of the Division of Plant Nutrition.

The same laboratory was conducting experiments with a synthetic diet for poultry, similar to those in progress with folic acid.

The conclusion that the vitamin was included in the diet was based on the results of the research conducted in the laboratory by Mr. R. T. K. Webber.

Factors Important To Soil Conditions

The sandy soils of Florida have become important in the study of the nutritional requirements of the plants. The natural soil provides a moisture reservoir and a

A new formula for the synthetic diet, which included folic acid, was compiled by the scientists of the commercial laboratory. Day old chicks were fed on the diet and the resulting chicks are growing.

The results of the experiments with folic acid and conducted as part of Project 677-22 in conjunction with the work on folic acid and vitamins by Single Chipmunk Leg- ham, indicate that the requirement of the requirement of the vitamin is high. Breeding hens require higher levels of folic acid for sustained egg production than for egg production. The best laying hens, however, do not need it for hatching.

Successful attempts to cure cases of vitamin deficiencies in laboratory animals not only in monkeys, indicate the relationship between the drug and the intestinal tract to prevent diarrhea.

Investigations have been conducted to determine the nature of the natural manufacture or synthesis of folic acid by the chicken. The results indicated that a failure to produce folic acid cannot be attributed to the failure of a specific vitamin in the diet. Treatment with synthetic folic acid has completely recovered the deficiency of the vitamin in the diet.

The addition of folic acid to the chicken's diet will result in the formation of red blood cells. This is in agreement with the results of the experiments conducted in the laboratory by Mr. R. T. K. Webber.

As with other vitamin deficiencies, the deficiency of folic acid is characterized by atrophy of the intestinal tract and anemia. This is due to the fact that folic acid is necessary for the formation of red blood cells.

A variation in the length of the intestinal tract, which occurs as a result of the deficiency, may be responsible for the anemia. The anemia is characterized by a decrease in the amount of folic acid synthesized by the body. This decrease is accompanied by a decrease in the production of red blood cells.

Pepperidge Farms, Inc.

The use of phospate in the development of soils and the study of the effects of folic acid on the natural growth of plants is of great importance to the research conducted in the laboratory by Mr. R. T. K. Webber.

SUGAR BEET NO. 1 SEED

The sugar beet is a native plant of the United States. The natural sugar beet, which contains a high percentage of fructose, is used as a sweetener in the production of soft drinks and candy.

The natural sugar beet contains a high percentage of fructose, which is used as a sweetener in the production of soft drinks and candy. It is also used as a food additive in the production of baked goods.

CULTIVATION TRIALS

The effect of cultivation on the yield of the sugar beet was studied. The results showed that cultivation is necessary for the control of weeds. The soil is cultivated to a depth of 6 inches, and the seed is sown at a depth of 1.5 inches.

Pepperidge Farms, Inc.

Seeds of sugar beets are grown in Florida and California. The natural sugar beet, which is used as a sweetener in the production of soft drinks and candy, is grown in Florida and California.

The natural sugar beet, which contains a high percentage of fructose, is used as a sweetener in the production of soft drinks and candy. It is also used as a food additive in the production of baked goods.

The use of phospate in the development of soils and the study of the effects of folic acid on the natural growth of plants is of great importance to the research conducted in the laboratory by Mr. R. T. K. Webber.

SUGAR BEET NO. 1 SEED

The sugar beet is a native plant of the United States. The natural sugar beet, which contains a high percentage of fructose, is used as a sweetener in the production of soft drinks and candy.

The natural sugar beet contains a high percentage of fructose, which is used as a sweetener in the production of soft drinks and candy. It is also used as a food additive in the production of baked goods.