Control of Peach Twig Borer
Subject of Continuing Research By University Entomologists

(Continued from page 1)

Peach Twig Borer
The peach twig is an annual pest on peaches, nectarines, plums, apricots, and cherries in the United States. The larvae cause severe outbreaks.

To determine its common "name" twig by its habit of burrowing into the terminal shoots of four twigs of the host plant in the spring and summer months. Permanent injury is not serious except on young trees which are sometimes badly deformed if no control measures are taken. Later in the season, however, the feeding causes considerable damage, especially in the Northern San Joaquin and Merced valleys.

Emergence begins a week or more over-lapping of the different stages in the life cycle of the insect. The worms usually emerge from the lower side of the blotch, then laterally between the bark and the tree. In these places the worms are observed on the first fruits of the season in large numbers, and the stems and petioles are stained with the red sap of the insect. The borer is a pest of the fig-related tree and is one of the most common pests of figs in the world. The borer is a pest of fig-related trees and is one of the most common pests of figs in the world.

Problems Still Unsolved
There is an unconfirmed report of the death of the borer in the early stages of its development. This is due to the presence of a small amount of a necrotic virus which spreads rapidly in the tree, killing the young growth. The virus is transmitted by the borer to healthy trees, causing the death of the entire crop. The virus spreads rapidly in the tree, killing the young growth. It is transmitted by the borer to healthy trees, causing the death of the entire crop.

In the past, most of the attempts to use microorganisms to control insect outbreaks have met with little or no success. In recent years, however, the use of microorganisms has become increasingly successful. One of the most promising methods of controlling insect pests is the use of bacterial or fungal pathogens. These microorganisms occur frequently in nature and can be used to control insect pests. In an effort to investigate the functional roles of these microorganisms in insect pest control, the following experiments were conducted.

The only advantage gained by the differential irrigation treatments was a decrease in the size of the trees. This treatment produced about six tons of fruit per acre, which is somewhat larger than those in the other treatments but not enough to compensate for the increased irrigation expense.

Experiments Under Way
Research is being conducted to find insect microorganisms which can be used to control insect pests. One such organism is the yellow-striped armyworm and in the California oak moth.

Similar virus diseases occur in the United States, and other parts of the world. The virus is transmitted by the borer to healthy trees, causing the death of the entire crop. The virus spreads rapidly in the tree, killing the young growth. It is transmitted by the borer to healthy trees, causing the death of the entire crop.

The growth of trees as indicated by the cross-section areas of the trunk is not enough to compensate for the increased irrigation expense.

The average cumulative yields, in tons of fruit per acre of crop, were higher in the trees under treatment A than in the trees under treatment B. This was due to the fact that the trees under treatment A were kept moist and grown in a more favorable environment. The trees under treatment B were not kept moist and were grown in a less favorable environment.

The quality of the dried product, as measured by the cross-section areas, was reduced to the permanent wilting percentage several times for each irrigation period. The trees under treatment A were kept moist and grown in a more favorable environment. The trees under treatment B were not kept moist and were grown in a less favorable environment.

The average yields of peaches, plums, and apricots, in tons of fruit per acre of crop, were higher in the trees under treatment A than in the trees under treatment B. This was due to the fact that the trees under treatment A were kept moist and grown in a more favorable environment. The trees under treatment B were not kept moist and were grown in a less favorable environment.

The average yields of peaches, plums, and apricots, in tons of fruit per acre of crop, were higher in the trees under treatment A than in the trees under treatment B. This was due to the fact that the trees under treatment A were kept moist and grown in a more favorable environment. The trees under treatment B were not kept moist and were grown in a less favorable environment.

The average yields of peaches, plums, and apricots, in tons of fruit per acre of crop, were higher in the trees under treatment A than in the trees under treatment B. This was due to the fact that the trees under treatment A were kept moist and grown in a more favorable environment. The trees under treatment B were not kept moist and were grown in a less favorable environment.
Irrigation Engineering Applied To Winery Waste Disposal, Stops Odor Nuisance, Mosquito Menace

(Continued from page 1)

of not more than six inches and prefer-ably not over four inches.

Use of Disposal Basins

A number of basins should be provided so that cycling or irrigation can be done at least seven days at intervals. If the basin is shallow, a longer cycling period because of its higher suspended solid content.

The waste solids remain as a thin layer on the floor of the disposal basin after the liquid disappears. As the layer dries, it cracks and expose the surface openings of the soil to the air. Because of this, periodic intervals the dried layer should be removed before the rain season.

Dried Layer Rich In Protein

The protein content of the dried layer will float when the next application of irrigation is made. For the pilot scale testing, better than twenty applications of water are required before a bench with a serious reduction in the rate of percolation. It is advisable to discontinue the soil irrigation once the dried cake accumulated to a considerable thickness.

Stockroots For Marsh Grapefruit Investigated

L. D. Biehler and W. P. Bitters

Two experimental plantings of Marsh grapefruit trees on several experimental stockroots were made in 1938. Marsh grapefruit is one of the most profitable fruit crops in California. It is a heavy producer and a popular choice among fruit growers. The trees are hardy and adaptable to a variety of soil types. However, the quality of the fruit can be affected by the rootstock used.

In the above illustration the white spots are seeds on boards covered with heavy greases to hold the seeds in place. A series of boards were used to test the seeds as it was dropped by the planter and to hold them where they fell so as to avoid damage.

Plate- Type Planters

Planters on vertical, horizontal, or inclined planes are capable of uniform metering of seed. Certain problems are common to all plate-type planters. It is essential to adapt to hand pick, pears, grain sorghums, squash, pelleted tomato, mixed grain, and rice seeds.

In a field test near Davis, pelleted onion seed was planted at the rate of nine pellets per foot and produced a final stand of six plants per foot.

Success of Precision Planting Of Small Seed Row Crops Now Possible With Improved Planter

(Continued from page 1)

Graded whole seed and pelleted seed give little trouble with over-filling or multiple filling, when sized within a 3/464 inch for the spherical or ball shape of the seed. The seedling stand was emphasized by the fact that an average final stand of 118 plants per inch was obtained.

Plate-type Planters

Platers on vertical, horizontal, or inclined planes are capable of uniform metering of seed. Certain problems are common to all plate-type planters. It is essential to adapt to hand pick, pears, grain sorghums, squash, pelleted tomato, mixed grain, and rice seeds.

In a field test near Davis, pelleted onion seed was planted at the rate of nine pellets per foot and produced a final stand of six plants per foot.

Precision Planting—Precision Planting

Precision planting requires precision seed and precision farming practices if the greatest gains are to be realized.

Planters available today are capable of better performance than the hand pick and farming practices used in the past.

New developments in seed process-

Page 3 CALIFORNIA AGRICULTURE May, 1947

For more information, please visit the official website of CALIFORNIA AGRICULTURE.