New Program of Research On Olive Cultural Problems

R. T. Harrold

One problem which has plagued olive growers since antiquity is the injury caused by 'Witches' Broom,' a disease due to a pathogen of olive trees. The trees affected by this disease are stunted and bear very few olives. The disease is caused by a pathogen, which is transmitted from tree to tree by a vector, the olive fruit fly. The flies lay eggs on the flowers of the olive tree, and the larvae of the flies feed on the developing seed, causing the tree to be stunted. The disease is most severe in hot, dry summers and humid winters.

Further Improvements Needed Before Mechanization of Cotton Growing Reaches Full Efficiency

J. P. Fullenkamp

The cotton picker has made tremendous progress in recent years, but there is still room for improvement in the efficiency of the picker. The picker must be able to remove all the cotton from the plant in a single pass, and it must be able to handle all the various types of cotton grown in different regions. The picker must also be able to operate under all weather conditions, including high winds and heavy rainfall. The picker must also be able to handle different varieties of cotton, which vary in maturity and maturity date.

Spring Management of Honeybee Colonies Determined By Colony Needs Rather Than By Calendar

J. E. Eckert

The condition of a honeybee colony during springtime affects its probability of success in the next six months. In general, a colony that is well started in the spring will be more likely to survive the winter and produce a good honey harvest. The condition of the colony at the beginning of the season is the most important factor in determining the colony's success.

Impaired Forage Grasses To Be Put To Field Trials

G. L. Shibles Jr.

More than fifty new strains of forage grasses have been produced during the past five years, but only a few have been released to the public. The development of new forage grasses is important because they can provide a source of food for livestock and improve the quality of the soil.

Over 110 Recognized Soil Types Represented In Twelve Recon's Of State's 100,000,000 Acres

E. Earl Steirle

The soils of the state of California are diverse and complex, with over 110 different recognized soil types. These soils vary in physical properties, such as texture, structure, and color, as well as in chemical properties, such as nutrient content and pH. The soils of California are also subject to a wide range of climatic conditions, which can affect their fertility and productivity.
Over 1100 Recognized Soil Types Represented in Twelve Regions Of State's 100,000,000 Acres

Spring Management Of Honeybees Not Governed by Dates

Further Improved Need Before Mechanization of Cotton Growing Reaches Full Efficiency

I. NORTHERN FOOTHILLS OF SIERRA NEVADA

Sedimentary Coarse Alluvial (Loam). 20-167.0. One of the dominant soil types in the northernfoothills of Sierra Nevada is the loam, fine sand loam, fine sandy loam, and sandy loam. These soils are well-drained and have a high water-holding capacity. They are excellent for most crops, including cotton, alfalfa, and orchard fruits.

II. CENTRAL AND WESTERN SACRAMENTO VALLEY

Sedimentary Coarse Alluvial (Loam). 20-167.0. The central and western Sacramento Valley is characterized by the presence of alluvial sediments derived from the Sacramento River. These soils are well-drained and have a high water-holding capacity. They are excellent for most crops, including cotton, alfalfa, and orchard fruits.

III. CENTRAL COAST RANGES AND VALLEYS

Sedimentary Coarse Alluvial (Loam). 20-167.0. The central coast ranges and valleys are characterized by the presence of alluvial sediments derived from the Pacific Ocean. These soils are well-drained and have a high water-holding capacity. They are excellent for most crops, including cotton, alfalfa, and orchard fruits.

IV. SACRAMENTO VALLEY

Sedimentary Coarse Alluvial (Loam). 20-167.0. The Sacramento Valley is characterized by the presence of alluvial sediments derived from the Sacramento River. These soils are well-drained and have a high water-holding capacity. They are excellent for most crops, including cotton, alfalfa, and orchard fruits.

V. COLUMBIA RIVER VALLEY

Sedimentary Coarse Alluvial (Loam). 20-167.0. The Columbia River Valley is characterized by the presence of alluvial sediments derived from the Columbia River. These soils are well-drained and have a high water-holding capacity. They are excellent for most crops, including cotton, alfalfa, and orchard fruits.

VI. DAVIS SAVANNAHS

Sedimentary Coarse Alluvial (Loam). 20-167.0. The Davis Savannas are characterized by the presence of alluvial sediments derived from the Sacramento River. These soils are well-drained and have a high water-holding capacity. They are excellent for most crops, including cotton, alfalfa, and orchard fruits.

VII. SOUTHERN COASTAL REGIONS

Sedimentary Coarse Alluvial (Loam). 20-167.0. The southern coastal regions are characterized by the presence of alluvial sediments derived from the Pacific Ocean. These soils are well-drained and have a high water-holding capacity. They are excellent for most crops, including cotton, alfalfa, and orchard fruits.

VIII. EASTERN FOOT-HILLS OF SIERRA NEVADA

Sedimentary Coarse Alluvial (Loam). 20-167.0. The eastern foothills of Sierra Nevada are characterized by the presence of alluvial sediments derived from the Sierra Nevada. These soils are well-drained and have a high water-holding capacity. They are excellent for most crops, including cotton, alfalfa, and orchard fruits.

IX. SAN JOAQUIN VALLEY

Sedimentary Coarse Alluvial (Loam). 20-167.0. The San Joaquin Valley is characterized by the presence of alluvial sediments derived from the San Joaquin River. These soils are well-drained and have a high water-holding capacity. They are excellent for most crops, including cotton, alfalfa, and orchard fruits.

X. WESTERN FOOTHILLS OF ALPINE AND CASSIUS REGIONS

Sedimentary Coarse Alluvial (Loam). 20-167.0. The western foothills of Alpine and Cassius Regions are characterized by the presence of alluvial sediments derived from the Sierra Nevada. These soils are well-drained and have a high water-holding capacity. They are excellent for most crops, including cotton, alfalfa, and orchard fruits.

XI. GREAT BASIN

Sedimentary Coarse Alluvial (Loam). 20-167.0. The Great Basin is characterized by the presence of alluvial sediments derived from the Sierra Nevada. These soils are well-drained and have a high water-holding capacity. They are excellent for most crops, including cotton, alfalfa, and orchard fruits.