Veterinary Scientists Prove Mastitis can be Cured Successfully

W. O. Schalm

Research in recent years has demonstrated that mastitis in cows can be cured successfully. Several strains of bacteria have been incriminated as causative agents of mastitis. For practical consideration, two organisms, Streptococcus agalactiae and Staphylococcus aureus, are of greatest interest. These organisms are widespread in the dairy industry and are frequently found in the milk of cows. A complete discussion of veterinary matters would be incomplete without an understanding of the various strains of bacteria that cause mastitis, as well as the methods used to treat them.

New Strains of Wheat

(Omitted from page 1) has been completed and all of our improved varieties are now available in the rust resistant form.

Stem Rust

Stem rust has always been a threat to wheat production in California. Resistance varieties offer the only practical solution to this problem. The pathogen is usually present in the state during the winter and spring months. However, the blast rust has also been observed in California, but it is not as prevalent as in neighboring states.

Bones Plaid, a private breeder in South Dakota, developed a stem rust resistant variety of wheat, known as the “Bones Plaid.” This variety was successfully tested at the University of California, and it is now available for commercial planting.

In the meantime a similar breed- ing project was undertaken in connection with stem rust control. This project involved the development of a stem rust resistant variety of wheat, which was released as Big Chico 43. The next step in the breeding program was to cross Big Chico 43 with White Feather 38, a variety that was known to be resistant to stem rust.

Resistant wheat varieties are now available and can be obtained from local seed dealers or by contacting the California Agricultural Extension Service.

How chronic mastitis is spread.

Several factors contribute to the spread of chronic mastitis. These include (1) the presence of Bacillus subtilis in the udder, (2) the use of untreated milk as a source of contamination, (3) the use of contaminated milking equipment, and (4) the presence of other bacteria in the environment.

Diagnosis

To control mastitis, it is necessary to detect all of the infected cows in a herd so that they may be properly segregated and treated. Certain "burst tests" have been advocated: using streams of milk for clots, shreds, or pus, or, if she survives, the gangrenous tissue. These faulty milking practices contribute to the spread of chronic mastitis. A thorough examination of the udder should be performed at the time of milking, with a particular emphasis on the teats and udder area. It is also important to inspect the udder after the cow has been milked, to ensure that all infected quarters have been treated.

Treatment

Streptococcus agalactiae is quite sensitive to penicillin. Cows infected with this organism should be retreated using twice the quantity of penicillin employed in the first series of injections.

Tons of butter and cheese are being produced in the state. However, the high cost of labor and equipment has made it difficult to produce these products at a reasonable price. In some dairy herds, the cows are stimulated by milk, which is a result of washing or manipulation of the teats, as much as 30 minutes to an hour before they are actually milked, which may be the cause of the mastitis. In some instances, when the cow is milked before the teat is properly cleaned, the milk and teat become contaminated.

When milking is finally started, the flow from the udder is slow. To compensate for the low flow rate, the milk is concentrated in the collection cups before it is transferred to the storage tanks. The milk is then allowed to cool before it is pasteurized or sterilized. This process helps to prevent the growth of pathogenic organisms. The milk is then ready to be bottled or sold for human consumption.

The most expensive yield trial involving California varieties of plant and animal nutrition, plant fertilizer and water resources, has been the goal of plant breeders and agroonomists for many years. In the meantime a similar breeding project was undertaken in connection with stem rust control.

In the meantime a similar breeding project was undertaken in connection with stem rust control. This project involved the development of a stem rust resistant variety of wheat, which was released as Big Chico 43. The next step in the breeding program was to cross Big Chico 43 with White Feather 38, a variety that was known to be resistant to stem rust.

In the meantime a similar breeding project was undertaken in connection with stem rust control. This project involved the development of a stem rust resistant variety of wheat, which was released as Big Chico 43. The next step in the breeding program was to cross Big Chico 43 with White Feather 38, a variety that was known to be resistant to stem rust.

In the meantime a similar breeding project was undertaken in connection with stem rust control. This project involved the development of a stem rust resistant variety of wheat, which was released as Big Chico 43. The next step in the breeding program was to cross Big Chico 43 with White Feather 38, a variety that was known to be resistant to stem rust.

In the meantime a similar breeding project was undertaken in connection with stem rust control. This project involved the development of a stem rust resistant variety of wheat, which was released as Big Chico 43. The next step in the breeding program was to cross Big Chico 43 with White Feather 38, a variety that was known to be resistant to stem rust.