It's No Longer 'Just Chicken Feed'—Now a Product of Scientific Nutritional Research

C. R. Gore

It wasn't so very long ago that "chicken feed" meant something of little value. The only time we thought of giving chickens the food we talk of proteins we really mean amino acid needs. Not all proteins are the same. They contain, and not all amino acids are found in the body. Just as a chicken needs a number of different carbohydrates as dietaries, so it needs a number of amino acids—at least 11 different ones, and probably more for best growth. The discovery of these 11 is likely to be the basis of combining amino acids so that one can help out another.

Determining Deficiencies

The poultryman might ask, "How can I find out what a diet is really lacking?" The answer is that, unlike vitamins, where such symptoms as rickets or toulie-toe paralysis may result, the amino acids are known, the deficit on growth, and all deficiencies look alike. This simply means that the reason for poor growth must be figured out from the feeds. As used by chemical analysis, the amino acid contents of many common feeds are now being determined, and from these data and the requirements of the protein for various growing trials in which pure amino acids are added to the different feeds, these results are in almost all instances. From these amino acid analyses, among the protein concentrates, and the amino acid deficit that they exhibit, are soybean meal (methionine, tryptophane, and lysine), milk (arginine and glycine), corn gluten meal (lysine and arginine), and cottonseed cake (lysine and tryptophane and methionine). In the above list, the principal deficiencies are lysine and methionine.

Sardine meal and sunflower seed were found to be lacking all the amino acids for the chick, and, in addition, it was learned that the corn meal—particularly methionine, lacking in other feeds. Sesame meal is an excellent amino acid source, and even though it is deficient in lysine, it is made up by combining it with soybean meal, which is rich in lysine. It is probable that an excess of lysine over the requirement.

The Poultry Division has confirmed results found from other parts of the country that corn meal, for normal hatchability, should be added to, and that this effect is not caused by the phlobinogen protein content of the meal. However, when barley and oat meal replace some of the corn and soybean meal, fish solubles supplement the diet only to the extent that the chick has not changed been made.

Mineral Requirements

Studies of the mineral requirements of chicks have revealed that deficiency of magnesium causes a loss in the rate of growth and a laying of the egg shell. Lack of calcium, in addition to the basal diet for laying purposes, also shows a marked effect on the body. The minerals that are important for chickens is 10 years old when the picture was taken.

It is deficiency, as there were with lack of riboflavin.

Avocado feed contains a number of things which the feeding of it gives a new light to the feeding of it. It has been found to be an important factor in the feeding of chicken feed. It contains carotene, vitamin A, and vitamin D. It also gives a new light to the feeding of chicken feed. It contains carotene, vitamin A, and vitamin D. It is a rich source of vitamin E, which is a factor in the feeding of chicken feed.

When we talk of proteins we are really talking about the various amino acids which are combined in different ways to make up a protein. The idea we talk of proteins we really mean amino acid needs. Not all proteins are the same. They contain, and not all amino acids are found in the body. Just as a chicken needs a number of different carbohydrates as dietaries, so it needs a number of amino acids—at least 11 different ones, and probably more for best growth. The discovery of these 11 is likely to be the basis of combining amino acids so that one can help out another.

New Methods Developed For Fruit Dehydration Superior Product

Steam-blanching of pears prior to dehydrating makes possible a dehydrated product superior to the sun-dried fruit. Cooling of the fruit for size and maturity before cutting is the only operation being used in many areas where the fruit is dried. The fruit is blanched for about 10 minutes and then blanched for about 10 minutes and then dehydrating is done with steam blanching followed by air drying.

Steam-blanched pears will be protected from physical damage and from loss of flavor, color, texture, and vitamins. The blanching process also helps to improve the texture and flavor of the fruit.

The fruit is washed, blanched, and then dehydrated in a vacuum chamber. The fruit is then removed from the blancher, cooled, and then placed in a dehydrator. The dehydrator is a vacuum chamber where the fruit is dried to the desired moisture content.

The fruit is then packed in airtight containers and stored until ready for use. The dehydrated fruit can be used in a variety of ways, such as in salads, desserts, and as a snack food.