California Agriculture
California Agriculture
California Agriculture
University of California
California Agriculture

Archive

Modeling vineyard expansion, potential habitat fragmentation

Share using any of the popular social networks Share by sending an email Print article
Share using any of the popular social networks Share by sending an email Print article

Authors

Emily Heaton, Department of Environmental Science, Policy and Management
Adina M. Merenlender, Department of Environmental Science, Policy and Management

Publication Information

California Agriculture 54(3):12-19. https://doi.org/10.3733/ca.v054n03p12

Published May 01, 2000

PDF  |  Citation  |  Permissions  |  Cited by 15 articles

Author Affiliations show

Abstract

We used a statistical modeling technique called logistic regression analysis, and a geographic information system (GIS), to map areas of possible future vineyard expansion in Sonoma County, based on data about vineyard development from 1990 through 1997. The goal of this research was to develop a model that would improve our understanding of vineyard expansion patterns at a landscape scale (for instance, including an entire county). The approach involved identifying landscape characteristics that were associated with vineyard development and mapping the areas with similar characteristics that were undeveloped in 1997. We used the results to map where habitat removal and fragmentation could result from vineyard expansion. This method, although still under development, is designed for county- or regional-scale analysis to assist land-use planners, natural resource protection agencies and land conservation programs in protecting valuable environmental resources while sustaining a vital agricultural economy.

Full text

This is the first time that areas potentially suited to agriculture have been modeled using GIS for an entire county in California. Predictions made by the model are derived from the currently available data, which does not include such information as microclimate and soil profiles for specific sites. Scientists hope to add more information in the future. — Ed.

While recognizing that the wine industry represents a significant portion of California's agricultural economy — $1.3 billion was paid for California wine grapes in 1999 (CASS 2000) — it is also important to preserve the ecological integrity of the natural resources upon which we all depend for services ranging from basic sustenance to aesthetic pleasure. Mapping and analyzing land use at the county scale can facilitate community efforts to balance economic growth and environmental protection. Land-use analysis and models can also aid planners in prioritizing undeveloped and agricultural land for possible protection through conservation easements and other methods.

Recently, vineyard development is expanding into rangelands, woodlands and forestlands (forests that include commercially harvested and regulated species such as Douglas fir), resulting in deforestation. We used results of our model to examine the potential for habitat loss and fragmentation. Model results can also be used to examine the possible effects of new regulations, such as those that restrict future vineyard development on steep slopes ( see sidebar, p. 19 ).

Modeling approach

Our analyses have sought to identify areas that are most susceptible to future vineyard development in Sonoma County. Our primary assumption is that areas that share important characteristics with recently planted land are more likely to be developed into vineyards in the future. The results of our modeling efforts are strongly influenced by the development trends mapped for Sonoma County from June 1990 through June 1997. The model does not specify sites that will necessarily support the successful propagation of wine grapes, since some newer vineyards may have been planted in less productive places. Furthermore, site-specific characteristics, such as microclimate and some soil properties, could not be included.

We used logistic regression analysis (Hosmer and Lemeshow 1989), a statistical modeling technique, to quantify the correlation between geographic factors and recent vineyard development. The combination of logistic regression and a geographic information system (GIS) has been used to model habitat suitability for wildlife species (Carroll et al. 1999; Clark et al. 1999; Massolo and Meriggi 1998). However, it is less commonly used to model land-use change, the notable example being the second generation of Landis and Zhang's (1998a, 1998b) California Urban Futures Model for urban expansion in Bay Area counties.

Logistic regression allowed us to identify which landscape characteristics were associated with sites that recently became vineyard versus those that did not. For a given version of the model, we applied an equation resulting from regression analysis to land that remained available for vineyard expansion and calculated the relative probability that each available site may be suitable for vineyard planting given its characteristics (fig. 1).

Vineyard locations representing 11,663 acres of post-1990 (from 1990 through 1997) vineyard and 36,337 acres of pre-1990 vineyard were incorporated into a GIS. Our statistical analysis of recent vineyard development was based on vineyard sites developed between 1990 and 1997. Explanatory variables were extracted from digital data on topography, vegetation, land use and distances to various features (table 1) ( see sidebar, p. 8 ). Although factors such as soil properties, water availability, zoning and market forces are also important, they were not incorporated because corresponding GIS layers were not yet available.

Oak woodlands support a variety of wildlife including tule elk. By modeling vineyard expansion, researchers can show where habitat may become too fragmented to support viable populations of all its original inhabitants in the future.

We divided the county into 2.5-acre cells with a corresponding elevation, vegetation type and so on. The average size of spatially distinct, post-1990 vineyard blocks in Sonoma County was 24 acres, and the majority (400 out of 489) were 2.5 acres or larger. Therefore treating the landscape as 2.5-acre plots reflects the scale at which vineyard development occurs. Due to the limitations of the digital vineyard map, we did not use a smaller cell size.

To gain an accurate understanding of expansion patterns, we identified land that was not available for vineyard development in 1990 and excluded corresponding cells from our model. Land that we considered unavailable for vineyard development included pre-1990 vineyards, 1990 urban areas, state or federally owned land, county and regional parks, water bodies, and land with a slope value greater than 50% or elevation greater than 2,625 feet. After removal of these lands, 537,995 acres were left for model-building. High elevation sites were excluded because these areas are often too cold to grow wine grapes. Planting on steep slopes (greater than 50%) is generally forbidden by new regulations so these areas were also excluded.

To test the ability of our methodology to predict vineyard expansion at the county level, we used two independent data sets, one for model building and one for model testing. Each data set included observations (the 2.5-acre cells) representing post-1990 vineyard sites and available undeveloped areas. To assign individual vineyards to a data set, they were first classified by appellation area and size: large (≥ 250acres), medium (≤ 250 acres and ≥ 25 acres), and small (≤ 25 acres). Half of the vineyards in each appellation-size class were then randomly assigned to each data set.

Multiple versions of the model were constructed using different combinations of variables and observations from the model building set. For a given version of the model, cells in the test data set were classified as either suitable for vineyard or unsuitable. The classification of each cell was then compared to its actual status (vineyard or undeveloped). The percentage of cells that were correctly classified using different versions of our model averaged 73%.

Fig. 1 Probability surface showing one version of the vineyard expansion model.

Vineyard development trends.

Between 1990 and 1997, vineyard expansion occurred primarily on gentle, nonforested slopes that were already under cultivation. The probability that a site was a post-1990 vineyard decreased as slope increased. Also, grassland and shrub were more likely to be converted than woodland or forest. Farmland designated as prime, unique or of state or local importance was more closely associated with vineyard development as compared to other land-use designations such as grazing land. Distance to the nearest pre-1990 vineyard was more strongly correlated with vineyard development than was distance to the nearest 1990 urban area. According to these trends, Knights Valley, Dry Creek and Sonoma appellations, and areas neighboring Sebastopol have high potential suitability for vineyard development (fig. 1, also see p. 9 ).

Geographic factors.

In our analysis, the likelihood of a cell being a post-1990 vineyard decreased as slope increased. This result is understandable because the cost and difficulty of establishing and maintaining a vineyard generally increase with increasing slope; development on steeper slopes requires erosion-control measures and in some cases recontouring and terracing.

The tendency to develop non-forested land can be explained primarily by economic considerations and possibly by disease prevention. Clearing trees can be expensive, and remaining tree roots can transmit Armellaria root rot (also known as oak root fungus) to planted vines (Merenlender and Crawford 1998). Also, clearing native vegetation for vineyard development has met with some community resistance ( see p. 4 ).

Distance to the nearest preexisting vineyard may also affect a grower's decision to plant a piece of land. Connoisseurs often seek wines from recognized appellation areas and therefore these wines can fetch a higher price per bottle. Even in regions that are less well known, the presence of healthy grapevines nearby suggests that new vineyards will also do well.

Land value may very well explain why the probability scores in our model decrease as distance to urban area decreases. Sonoma County cities are growing, and the resulting opportunity for urban development can increase real estate values, which makes land near urban areas more expensive for agriculture. On the other hand, agricultural land that is far from transportation corridors may contend with increased transportation costs and is likely to fall outside of well-recognized wine-grape growing regions in Sonoma County, which can affect the price per ton. This trend is partially reflected by the negative correlation between probability score and the distance to the nearest road.

TABLE 1 Variables included in logistic regression analysis, whether continuous or binary, and digital source of data

Modeling limitations

We used data based on information mapped across a large geographic extent, meaning that site-specific details are missing from the information. For example, the elevation data is derived from a 98-foot digital elevation model that would not be able to detect fine-scale topographical changes such as rocky outcrops that can make a site impossible to farm. Our approach is meant to aid in identifying general areas (for example, the Sebastopol vicinity or areas in southern Alexander Valley, see p. 9 ) that have characteristics similar to sites where vineyards have recently been established. It does not allow us to examine a particular acre on a given probability surface and determine with certainty whether that piece of land is suitable for vineyard development. The model also does not address how much vineyard is likely to be planted in the future.

Using a modeling technique to analyze GIS data enables scientists to map areas of possible future vineyard expansion.

The model does not yet include all of the variables that are important in determining site suitability for growing grapes. We are collecting General Plan land-use data from county maps and soil characteristics from the county soil survey. However, data representing important microphysical variables is essentially unobtainable in digital format for the entire county, given limited academic research funds (for example, microhabitat variables related to climate, site-specific soil properties and high-resolution topography). In addition, economic variables such as the future value of Sonoma County's wine grapes and the availability of land for sale are very important but were not considered in this first modeling exercise.

Vineyards were not mapped for the western third of the county in the original mapping effort because it was not an important grape-growing region from 1990 through 1997. However, some vineyards have recently been planted in western Sonoma County, where coastal forestlands represent the majority of the land cover. This fact, and the knowledge that patterns have changed over the past 10 years, indicates that trends could change again as long as the demand for high-quality wines and new varieties continues to grow. Nevertheless, landscape characteristics considered favorable in the past will probably continue to be favorable, and parcels with these characteristics will remain attractive for vineyard development if growing wine grapes continues to be profitable.

The method of selecting which vineyard and nonvineyard cells to include in the model affects the correlations between certain landscape variables (e.g., elevation) and vineyard development. To build the version of the model presented here, we used all the available cells from the selected vineyards; however, future work should include analysis on the effects of weighting the number of samples from a given vineyard according to its size.

Habitat fragmentation impacts

Biodiversity is reduced when natural habitats are converted into urban, suburban and agricultural land. This problem is compounded by the fragmentation of contiguous natural areas into an increasing number of smaller fragments, each of which may not be large enough to support viable populations of all the original inhabitants.

Fragmentation has been linked to a number of environmental consequences, in Sonoma County (Merenlender et al. 1998) and elsewhere (Saunders et al. 1991; Forman 1995; Turner 1996; Harrison and Bruna 1999). These include physical effects due to increased amounts of forest edge that cause changes in microclimate (Chen et al. 1995) and can result in tree mortality (Ferreira and Laurance 1997; Esseen 1994). The biological effects of fragmentation include a decline in species requiring large amounts of connected habitat (Beir 1993; Stouffer and Bierregaard 1995) and increased predation of native fauna (Andren 1995; Sieving and Karr 1997).

To identify where vineyard expansion may lead to future habitat fragmentation, we identified predicted changes in habitat connectivity resulting from one expansion scenario. First, as a baseline, we mapped continuous patches of tree cover that existed in 1990 using a vegetation map of Sonoma County based on 1990 satellite imagery (82-foot resolution) provided by the California Department of Forestry and Fire Protection. A continuous patch of tree cover was defined as being at least 164 feet away from urban areas, and all cells comprising a patch had to contain or be within 82 feet of a forest or woodland habitat type (blue oak woodland, coast live oak woodland, conifer or montane hardwood). Furthermore, a continuous patch had to be a minimum size of 250 acres in the north part of the county or 50 acres in the south, with the exception of the Laguna de Santa Rosa area, where all areas mapped as tree cover were analyzed as habitat patches. A smaller minimum patch size was used for the more developed southern county because larger patches of woodland are not common there, making smaller habitat patches essential for wildlife conservation.

The oaks in the Laguna de Santa Rosa area are primarily valley oaks, now considered a rare community type. Tracking changes to this habitat at the highest resolution possible was of prime importance. These patch-size criteria were developed with input from researchers and land managers familiar with Sonoma County's oak woodlands.

Each patch of connected tree cover resulting from this analysis is represented by a different color in figure 2a. Within the study area, we calculated that there were 3,648 continuous patches of tree cover prior to conversion, totaling 252,067 acres. Five of these patches were larger than 5,000 acres, 16 were 250 to 5,000 acres, and 3,627 were less than 250 acres (fig. 3).

Using the results from the version of the model mapped in figure 1, we then mapped all “available” non-vineyard land that had a probability value greater than 0.5 as vineyard. In a sample with an equal number of vineyard and nonvineyard observations (as was used in the version of the model presented in fig. 1), the probability of drawing a vineyard cell at random is 0.5. In such a sample, a cell with an estimated probability value greater than 0.5 is more likely to be a post-1990 vineyard than randomly expected, and a cell with a value less than 0.5 is less likely to be a post-1990 vineyard. For the version of the model mapped in fig. 1,78% of all post-1990 vineyard cells had a probability greater than 0.5, indicating that although cells with a probability value less than 0.5 may be suitable for vineyard development, cells with a value greater than 0.5 were developed more often.

Using an expansion scenario with probability greater than 0.5, an additional 133,581 acres of vineyard were mapped. This is not to say that this entire acreage is plantable. For example, in some areas the temperature or the chemical composition of the soil may prevent the production of wine grapes. It is unlikely that 133,581 acres of new vineyard will ever be planted within the study area, considering that in 1997 there were 48,000 acres of vineyard. However, the model would predict that the 9,000 acres of vineyard currently being added (and registered by October 1999 in the Agricultural Commissioner's Office) will more likely be planted within the areas designated by this expansion scenario.

Fig. 2 Patches of continuous tree cover before (A) and after (B) the maximum vineyard development scenario for the Sonoma County study area. Each patch is shown by a unique color.

Use of this “maximum development scenario” allows for a conservative estimate of woodland areas that may be desirable for vineyard expansion. Land-use planners can use this scenario to identify which woodlands may warrant protection, given zoning and land sales patterns. One of the most effective uses of this analysis is to learn where continuous patches of tree cover and areas of high vineyard suitability overlap. This is where fragmentation of ecologically valuable woodland habitat is more likely to occur. According to our results, areas that may receive significant habitat loss and fragmentation include hillsides east of Healdsburg, Sonoma Valley, and the west side of Santa Rosa (fig. 2a, 2b, also p. 9).

The habitat type most threatened by vineyard expansion in the Mayacmas range running along the east side of Sonoma County and Sonoma Mountains west of Sonoma Valley is absent from the more coastal or steeper sites in Sonoma County (fig. 4). The overstory is predominantly Oregon, valley, black, blue and/or coast live oak and is accompanied by a diverse under-story of native perennial grasses and shrubs such as toyon and manzanita.

Fig. 3 Distribution of patches of continuous tree cover before (1990) and after the maximum development scenario. Patches less than 50 acres were mapped only for southern Sonoma County. Patches greater than 250 acres were mapped for the entire Sonoma County study area.

Fig. 4 Patches of continuous tree cover in Sonoma Valley before (A) and after (B) the maximum vineyard development scenario. Each patch is shown by a unique color.

Moister sites may include Douglas fir and redwood, while flatter areas such as the Laguna de Santa Rosa area primarily support remnant stands of valley oaks.

Figure 2b displays the continuous patches of tree cover that would persist after the “maximum vineyard development” scenario. After applying the conversion scenario, there were 2,742 patches, totaling 222,868 acres. Three of these were larger than 5,000 acres, 24 were 250 to 5,000 acres, and 2,715 were smaller than 250 acres. The increase in the number of medium-sized patches after conversion is due to the fragmentation of larger forested areas into several smaller ones. Over 900 small patches, primarily in the Laguna de Santa Rosa area, are lost altogether when the maximum vineyard development scenario is run. The removal of habitat using the maximum development scenario resulted in a size reduction of the largest patches, deletion of the smallest patches and an increase in the number of medium-sized patches (fig. 3).

Future directions

Recent developments in computer power and mapping analysis software have made it possible for more researchers to model land-use change across large geographic regions (Goodchild et al. 1996). This approach has allowed us to map areas that may be suitable for vineyard expansion and areas where conversions could cause habitat loss and fragmentation. We would like to continue to monitor where vineyard expansion occurs to determine if the areas identified are indeed converted from woodland to vineyard.

We would like to expand our investigations in this area by using remote sensing to monitor vineyard development more regularly and across a larger geographic region. Active collaborations have been initiated to investigate how changes in vineyard development costs and wine-grape values may affect development patterns. We also hope to improve our current model by including additional environmental variables, such as soil characteristics and water availability.

Although vineyard expansion can have negative environmental impacts, other land-uses changes such as urban and exurban development also have consequences for habitat fragmentation and biodiversity. Integrating urban expansion models with our vineyard expansion model will allow us to explore changes in the urban-agriculture-wildland interface, resulting in a better understanding of the forces driving these changes and the relative impacts of different land uses on various ecological processes. It will also be important to incorporate the county planning process in future studies, because areas suitable for vineyard development may be more valued for other land uses such as urban or rural residential.

We have presented this initial model and its results to county planners, agencies and citizens, generating discussion at the local level ( see sidebar, p. 19 ). Further, this method has provided open-space acquisition planners with some direction for protecting oak woodlands, demonstrating that this information can be used to support science-based planning and policy decision-making.

Return to top

Author notes

This research was supported by the UC Sustainable Agriculture Research and Education Program. We would like to thank Circuit Rider Productions, Inc. and the Sonoma County Grape Growers Association for the digital vineyard data. Dave Newburn, Peng Gong and Greg Biging provided valuable discussion on the topic. We are grateful to Greg Greenwood and Sean Saving, who provided the program for analyzing forest fragmentation, and to Colin Brooks for running this analysis. Discussions with Charles Cooke, Jeff Opperman, Daniel Roberts and two anonymous reviewers improved this manuscript.g58

References

[CASS] California Agricultural Statistics Service. 1999 final Grape Crush Report 2000. March Sacramento, CA:

Andren S. Hanson L, Fahrig L, Meriam G. Effects of landscape composition on predation rates at habitat edges. Mosaic Landscapes and Ecological Processes. 1995. London:Chapman & Hall. 225p. 55.

Beir P. Determining minimum habitat areas and habitat corridors for cougars. Conservation Biology. 1993. 7:108. DOI: 10.1046/j.1523-1739.1993.07010094.x [CrossRef]

Carroll C, Zielinski WJ, Noss RF. Using presence-absence data to build and test spatial habitat models for the fisher in the Klamath region, U.S.A. Conservation Biology. 1999. 13:59. DOI: 10.1046/j.1523-1739.1999.98364.x [CrossRef]

Clark WR, Schmitz RA, Bogenschutz TR. Site selection and nest success of ring-necked pheasants as a function of location in Iowa landscapes. J Wildlife Management. 1999. 63:89. DOI: 10.2307/3802812 [CrossRef]

Chen J, Franklin JF, Spies TA. Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forest. Agr and Forest Meteorology. 1995. 63:37. DOI: 10.1016/0168-1923(93)90061-L [CrossRef]

Esseen PA. Tree mortality patterns after experimental fragmentation of an old-growth conifer forest. Biological Conservation. 1994. 68:28. DOI: 10.1016/0006-3207(94)90542-8 [CrossRef]

Ferreira LV, Laurance WF. Effects of forest fragmentation on mortality and damage of selected trees in Central Amazonia. Conservation Biology. 1997. 11:801. DOI: 10.1046/j.1523-1739.1997.96167.x [CrossRef]

Forman RT. Land Mosaics: The Ecology of Landscapes and Regions.. 1995. Cambridge:Cambridge University Press. 632p.

Goodchild MF, Steyaert LT, BO Parks, et al. GIS and Environmental Modeling.. 1996. Fort Collins, CO:GIS World. 486p.

Harrison S, Bruna E. Habitat fragmentation and large-scale conservation: What do we know for sure?. Ecography. 1999. 22:32. DOI: 10.1111/j.1600-0587.1999.tb00496.x [CrossRef]

Hosmer DW, Lemeshow S. Applied Logistic Regression.. 1989. New York:John Wiley & Sons. 307p.

Landis J, Zhang M. The second generation of the California urban futures model. Part 1: Model logic and theory. Environment and Planning A. 1998a. 30:66.

Landis J, Zhang M. The second generation of the California urban futures model. Part 2: Specification and calibration results of the land-use change submodel. Environment and Planning B: Planning and Design. 1998b. 25:824. DOI: 10.1068/b250795 [CrossRef]

Massolo A, Meriggi A. Factors affecting habitat occupancy by wolves in northern Apennines (northern Italy): A model of habitat suitability. Ecography. 1998. 21:107. DOI: 10.1111/j.1600-0587.1998.tb00663.x [CrossRef]

Merenlender A, Crawford J. Vineyards in an Oak Landscape: Exploring the Physical, Biological, and Social Benefits of Maintaining and Restoring Native Vegetation in and Around the Vineyard. UC DANR publication 21577 1998. Oakland, CA:p.15.

Merenlender AM, Heise KL, Brooks C. Effects of subdividing private property on biodiversity in California's north coast oak woodlands. Transactions of the Western Section of the Wildlife Society. 1998. 34:20.

Saunders DA, Hobb RJ, Margules CR. Biological consequences of ecosystem fragmentation: A review. Conservation Biology. 1991. 5:32. DOI: 10.1111/j.1523-1739.1991.tb00384.x [CrossRef]

Sieving KE, Karr JR. Laurance WF, Bierregaard R. Avian extinction and persistence mechanisms in lowland Panama. Tropical Forest Remnants: Ecology, Management and Conservation of Fragmented Communities. 1997. Chicago:University of Chicago Press. 156p. 70.

Stouffer PC, Bierregaard RO. Use of Amazonian forest fragments by understory insectivorous birds: effects of fragment size, surrounding secondary vegetation and time since isolation. Ecology. 1995. 76:903. DOI: 10.2307/2265818 [CrossRef]

Turner IM. Species loss in fragments of tropical rain forests: A review of the evidence. J Applied Ecology. 1996. 33:9. DOI: 10.2307/2404743 [CrossRef]

Citations

Ecosystem Function in Savannas
Dennis Baldocchi et al. 2010.
http://dx.doi.org/10.1201/b10275-10

Use of Riparian Corridors and Vineyards by Mammalian Predators in Northern California
JODI A. HILTY and ADINA M. MERENLENDER 2004. Conservation Biology 18(1):126
http://dx.doi.org/10.1111/j.1523-1739.2004.00225.x

Towards sustainable rural landscapes? a multivariate analysis of the structure of traditional tree cropping systems along a human pressure gradient in a mediterranean region
Rita Biasi et al. 2016. Agroforestry Systems
http://dx.doi.org/10.1007/s10457-016-0006-0

Vineyard proximity to riparian habitat influences Western grape leafhopper (Erythroneura elegantula Osborn) populations
Houston Wilson et al. 2015. Agriculture, Ecosystems & Environment 211:43
http://dx.doi.org/10.1016/j.agee.2015.04.021

Land and water use management in vine growing by using geographic information systems in Castilla-La Mancha, Spain
Francisco J. Montero Riquelme and Antonio Brasa Ramos 2005. Agricultural Water Management 77(1-3):82
http://dx.doi.org/10.1016/j.agwat.2004.09.027

Converting oak woodland or savanna to vineyards may stress groundwater supply in summer
Mark Grismer and Caitlin Asato 2012. California Agriculture 66(4):144
http://dx.doi.org/10.3733/ca.v066n04p144

Studying Biodiversity on Private Lands
Jodi Hilty and Adina M. Merenlender 2003. Conservation Biology 17(1):132
http://dx.doi.org/10.1046/j.1523-1739.2003.01361.x

Adina Merenlender: Building a new mode of extension for biodiversity conservation
Jim Downing 2016. California Agriculture 70(2):57
http://dx.doi.org/10.3733/ca.v070n02p57

Forecasting the effect of land-use change on native and non-native mammalian predator distributions
J. A. Hilty et al. 2006. Biodiversity and Conservation 15(9):2853
http://dx.doi.org/10.1007/s10531-005-1534-5

Environmentally Sustainable Viticulture
Julie Jedlicka et al. 2015.
http://dx.doi.org/10.1201/b18226-18

Vineyard and riparian habitat, not nest box presence, alter avian community composition
Julie A. Jedlicka et al. 2014. The Wilson Journal of Ornithology 126(1):60
http://dx.doi.org/10.1676/13-058.1

Assessing the impact of local habitat variables and landscape context on riparian birds in agricultural, urbanized, and native landscapes
David Luther et al. 2008. Biodiversity and Conservation 17(8):1923
http://dx.doi.org/10.1007/s10531-008-9332-5

Biotic homogenization of the California flora in urban and urbanizing regions
Mark W. Schwartz et al. 2006. Biological Conservation 127(3):282
http://dx.doi.org/10.1016/j.biocon.2005.05.017

Influence of land use on fine sediment in salmonid spawning gravels within the Russian River Basin, California
Jeff J Opperman et al. 2005. Canadian Journal of Fisheries and Aquatic Sciences 62(12):2740
http://dx.doi.org/10.1139/f05-187

Vinecology: pairing wine with nature
Joshua H. Viers et al. 2013. Conservation Letters
http://dx.doi.org/10.1111/conl.12011

Modeling vineyard expansion, potential habitat fragmentation

Emily Heaton, Adina M. Merenlender
Webmaster Email: wsuckow@ucanr.edu

Modeling vineyard expansion, potential habitat fragmentation

Share using any of the popular social networks Share by sending an email Print article
Share using any of the popular social networks Share by sending an email Print article

Authors

Emily Heaton, Department of Environmental Science, Policy and Management
Adina M. Merenlender, Department of Environmental Science, Policy and Management

Publication Information

California Agriculture 54(3):12-19. https://doi.org/10.3733/ca.v054n03p12

Published May 01, 2000

PDF  |  Citation  |  Permissions  |  Cited by 15 articles

Author Affiliations show

Abstract

We used a statistical modeling technique called logistic regression analysis, and a geographic information system (GIS), to map areas of possible future vineyard expansion in Sonoma County, based on data about vineyard development from 1990 through 1997. The goal of this research was to develop a model that would improve our understanding of vineyard expansion patterns at a landscape scale (for instance, including an entire county). The approach involved identifying landscape characteristics that were associated with vineyard development and mapping the areas with similar characteristics that were undeveloped in 1997. We used the results to map where habitat removal and fragmentation could result from vineyard expansion. This method, although still under development, is designed for county- or regional-scale analysis to assist land-use planners, natural resource protection agencies and land conservation programs in protecting valuable environmental resources while sustaining a vital agricultural economy.

Full text

This is the first time that areas potentially suited to agriculture have been modeled using GIS for an entire county in California. Predictions made by the model are derived from the currently available data, which does not include such information as microclimate and soil profiles for specific sites. Scientists hope to add more information in the future. — Ed.

While recognizing that the wine industry represents a significant portion of California's agricultural economy — $1.3 billion was paid for California wine grapes in 1999 (CASS 2000) — it is also important to preserve the ecological integrity of the natural resources upon which we all depend for services ranging from basic sustenance to aesthetic pleasure. Mapping and analyzing land use at the county scale can facilitate community efforts to balance economic growth and environmental protection. Land-use analysis and models can also aid planners in prioritizing undeveloped and agricultural land for possible protection through conservation easements and other methods.

Recently, vineyard development is expanding into rangelands, woodlands and forestlands (forests that include commercially harvested and regulated species such as Douglas fir), resulting in deforestation. We used results of our model to examine the potential for habitat loss and fragmentation. Model results can also be used to examine the possible effects of new regulations, such as those that restrict future vineyard development on steep slopes ( see sidebar, p. 19 ).

Modeling approach

Our analyses have sought to identify areas that are most susceptible to future vineyard development in Sonoma County. Our primary assumption is that areas that share important characteristics with recently planted land are more likely to be developed into vineyards in the future. The results of our modeling efforts are strongly influenced by the development trends mapped for Sonoma County from June 1990 through June 1997. The model does not specify sites that will necessarily support the successful propagation of wine grapes, since some newer vineyards may have been planted in less productive places. Furthermore, site-specific characteristics, such as microclimate and some soil properties, could not be included.

We used logistic regression analysis (Hosmer and Lemeshow 1989), a statistical modeling technique, to quantify the correlation between geographic factors and recent vineyard development. The combination of logistic regression and a geographic information system (GIS) has been used to model habitat suitability for wildlife species (Carroll et al. 1999; Clark et al. 1999; Massolo and Meriggi 1998). However, it is less commonly used to model land-use change, the notable example being the second generation of Landis and Zhang's (1998a, 1998b) California Urban Futures Model for urban expansion in Bay Area counties.

Logistic regression allowed us to identify which landscape characteristics were associated with sites that recently became vineyard versus those that did not. For a given version of the model, we applied an equation resulting from regression analysis to land that remained available for vineyard expansion and calculated the relative probability that each available site may be suitable for vineyard planting given its characteristics (fig. 1).

Vineyard locations representing 11,663 acres of post-1990 (from 1990 through 1997) vineyard and 36,337 acres of pre-1990 vineyard were incorporated into a GIS. Our statistical analysis of recent vineyard development was based on vineyard sites developed between 1990 and 1997. Explanatory variables were extracted from digital data on topography, vegetation, land use and distances to various features (table 1) ( see sidebar, p. 8 ). Although factors such as soil properties, water availability, zoning and market forces are also important, they were not incorporated because corresponding GIS layers were not yet available.

Oak woodlands support a variety of wildlife including tule elk. By modeling vineyard expansion, researchers can show where habitat may become too fragmented to support viable populations of all its original inhabitants in the future.

We divided the county into 2.5-acre cells with a corresponding elevation, vegetation type and so on. The average size of spatially distinct, post-1990 vineyard blocks in Sonoma County was 24 acres, and the majority (400 out of 489) were 2.5 acres or larger. Therefore treating the landscape as 2.5-acre plots reflects the scale at which vineyard development occurs. Due to the limitations of the digital vineyard map, we did not use a smaller cell size.

To gain an accurate understanding of expansion patterns, we identified land that was not available for vineyard development in 1990 and excluded corresponding cells from our model. Land that we considered unavailable for vineyard development included pre-1990 vineyards, 1990 urban areas, state or federally owned land, county and regional parks, water bodies, and land with a slope value greater than 50% or elevation greater than 2,625 feet. After removal of these lands, 537,995 acres were left for model-building. High elevation sites were excluded because these areas are often too cold to grow wine grapes. Planting on steep slopes (greater than 50%) is generally forbidden by new regulations so these areas were also excluded.

To test the ability of our methodology to predict vineyard expansion at the county level, we used two independent data sets, one for model building and one for model testing. Each data set included observations (the 2.5-acre cells) representing post-1990 vineyard sites and available undeveloped areas. To assign individual vineyards to a data set, they were first classified by appellation area and size: large (≥ 250acres), medium (≤ 250 acres and ≥ 25 acres), and small (≤ 25 acres). Half of the vineyards in each appellation-size class were then randomly assigned to each data set.

Multiple versions of the model were constructed using different combinations of variables and observations from the model building set. For a given version of the model, cells in the test data set were classified as either suitable for vineyard or unsuitable. The classification of each cell was then compared to its actual status (vineyard or undeveloped). The percentage of cells that were correctly classified using different versions of our model averaged 73%.

Fig. 1 Probability surface showing one version of the vineyard expansion model.

Vineyard development trends.

Between 1990 and 1997, vineyard expansion occurred primarily on gentle, nonforested slopes that were already under cultivation. The probability that a site was a post-1990 vineyard decreased as slope increased. Also, grassland and shrub were more likely to be converted than woodland or forest. Farmland designated as prime, unique or of state or local importance was more closely associated with vineyard development as compared to other land-use designations such as grazing land. Distance to the nearest pre-1990 vineyard was more strongly correlated with vineyard development than was distance to the nearest 1990 urban area. According to these trends, Knights Valley, Dry Creek and Sonoma appellations, and areas neighboring Sebastopol have high potential suitability for vineyard development (fig. 1, also see p. 9 ).

Geographic factors.

In our analysis, the likelihood of a cell being a post-1990 vineyard decreased as slope increased. This result is understandable because the cost and difficulty of establishing and maintaining a vineyard generally increase with increasing slope; development on steeper slopes requires erosion-control measures and in some cases recontouring and terracing.

The tendency to develop non-forested land can be explained primarily by economic considerations and possibly by disease prevention. Clearing trees can be expensive, and remaining tree roots can transmit Armellaria root rot (also known as oak root fungus) to planted vines (Merenlender and Crawford 1998). Also, clearing native vegetation for vineyard development has met with some community resistance ( see p. 4 ).

Distance to the nearest preexisting vineyard may also affect a grower's decision to plant a piece of land. Connoisseurs often seek wines from recognized appellation areas and therefore these wines can fetch a higher price per bottle. Even in regions that are less well known, the presence of healthy grapevines nearby suggests that new vineyards will also do well.

Land value may very well explain why the probability scores in our model decrease as distance to urban area decreases. Sonoma County cities are growing, and the resulting opportunity for urban development can increase real estate values, which makes land near urban areas more expensive for agriculture. On the other hand, agricultural land that is far from transportation corridors may contend with increased transportation costs and is likely to fall outside of well-recognized wine-grape growing regions in Sonoma County, which can affect the price per ton. This trend is partially reflected by the negative correlation between probability score and the distance to the nearest road.

TABLE 1 Variables included in logistic regression analysis, whether continuous or binary, and digital source of data

Modeling limitations

We used data based on information mapped across a large geographic extent, meaning that site-specific details are missing from the information. For example, the elevation data is derived from a 98-foot digital elevation model that would not be able to detect fine-scale topographical changes such as rocky outcrops that can make a site impossible to farm. Our approach is meant to aid in identifying general areas (for example, the Sebastopol vicinity or areas in southern Alexander Valley, see p. 9 ) that have characteristics similar to sites where vineyards have recently been established. It does not allow us to examine a particular acre on a given probability surface and determine with certainty whether that piece of land is suitable for vineyard development. The model also does not address how much vineyard is likely to be planted in the future.

Using a modeling technique to analyze GIS data enables scientists to map areas of possible future vineyard expansion.

The model does not yet include all of the variables that are important in determining site suitability for growing grapes. We are collecting General Plan land-use data from county maps and soil characteristics from the county soil survey. However, data representing important microphysical variables is essentially unobtainable in digital format for the entire county, given limited academic research funds (for example, microhabitat variables related to climate, site-specific soil properties and high-resolution topography). In addition, economic variables such as the future value of Sonoma County's wine grapes and the availability of land for sale are very important but were not considered in this first modeling exercise.

Vineyards were not mapped for the western third of the county in the original mapping effort because it was not an important grape-growing region from 1990 through 1997. However, some vineyards have recently been planted in western Sonoma County, where coastal forestlands represent the majority of the land cover. This fact, and the knowledge that patterns have changed over the past 10 years, indicates that trends could change again as long as the demand for high-quality wines and new varieties continues to grow. Nevertheless, landscape characteristics considered favorable in the past will probably continue to be favorable, and parcels with these characteristics will remain attractive for vineyard development if growing wine grapes continues to be profitable.

The method of selecting which vineyard and nonvineyard cells to include in the model affects the correlations between certain landscape variables (e.g., elevation) and vineyard development. To build the version of the model presented here, we used all the available cells from the selected vineyards; however, future work should include analysis on the effects of weighting the number of samples from a given vineyard according to its size.

Habitat fragmentation impacts

Biodiversity is reduced when natural habitats are converted into urban, suburban and agricultural land. This problem is compounded by the fragmentation of contiguous natural areas into an increasing number of smaller fragments, each of which may not be large enough to support viable populations of all the original inhabitants.

Fragmentation has been linked to a number of environmental consequences, in Sonoma County (Merenlender et al. 1998) and elsewhere (Saunders et al. 1991; Forman 1995; Turner 1996; Harrison and Bruna 1999). These include physical effects due to increased amounts of forest edge that cause changes in microclimate (Chen et al. 1995) and can result in tree mortality (Ferreira and Laurance 1997; Esseen 1994). The biological effects of fragmentation include a decline in species requiring large amounts of connected habitat (Beir 1993; Stouffer and Bierregaard 1995) and increased predation of native fauna (Andren 1995; Sieving and Karr 1997).

To identify where vineyard expansion may lead to future habitat fragmentation, we identified predicted changes in habitat connectivity resulting from one expansion scenario. First, as a baseline, we mapped continuous patches of tree cover that existed in 1990 using a vegetation map of Sonoma County based on 1990 satellite imagery (82-foot resolution) provided by the California Department of Forestry and Fire Protection. A continuous patch of tree cover was defined as being at least 164 feet away from urban areas, and all cells comprising a patch had to contain or be within 82 feet of a forest or woodland habitat type (blue oak woodland, coast live oak woodland, conifer or montane hardwood). Furthermore, a continuous patch had to be a minimum size of 250 acres in the north part of the county or 50 acres in the south, with the exception of the Laguna de Santa Rosa area, where all areas mapped as tree cover were analyzed as habitat patches. A smaller minimum patch size was used for the more developed southern county because larger patches of woodland are not common there, making smaller habitat patches essential for wildlife conservation.

The oaks in the Laguna de Santa Rosa area are primarily valley oaks, now considered a rare community type. Tracking changes to this habitat at the highest resolution possible was of prime importance. These patch-size criteria were developed with input from researchers and land managers familiar with Sonoma County's oak woodlands.

Each patch of connected tree cover resulting from this analysis is represented by a different color in figure 2a. Within the study area, we calculated that there were 3,648 continuous patches of tree cover prior to conversion, totaling 252,067 acres. Five of these patches were larger than 5,000 acres, 16 were 250 to 5,000 acres, and 3,627 were less than 250 acres (fig. 3).

Using the results from the version of the model mapped in figure 1, we then mapped all “available” non-vineyard land that had a probability value greater than 0.5 as vineyard. In a sample with an equal number of vineyard and nonvineyard observations (as was used in the version of the model presented in fig. 1), the probability of drawing a vineyard cell at random is 0.5. In such a sample, a cell with an estimated probability value greater than 0.5 is more likely to be a post-1990 vineyard than randomly expected, and a cell with a value less than 0.5 is less likely to be a post-1990 vineyard. For the version of the model mapped in fig. 1,78% of all post-1990 vineyard cells had a probability greater than 0.5, indicating that although cells with a probability value less than 0.5 may be suitable for vineyard development, cells with a value greater than 0.5 were developed more often.

Using an expansion scenario with probability greater than 0.5, an additional 133,581 acres of vineyard were mapped. This is not to say that this entire acreage is plantable. For example, in some areas the temperature or the chemical composition of the soil may prevent the production of wine grapes. It is unlikely that 133,581 acres of new vineyard will ever be planted within the study area, considering that in 1997 there were 48,000 acres of vineyard. However, the model would predict that the 9,000 acres of vineyard currently being added (and registered by October 1999 in the Agricultural Commissioner's Office) will more likely be planted within the areas designated by this expansion scenario.

Fig. 2 Patches of continuous tree cover before (A) and after (B) the maximum vineyard development scenario for the Sonoma County study area. Each patch is shown by a unique color.

Use of this “maximum development scenario” allows for a conservative estimate of woodland areas that may be desirable for vineyard expansion. Land-use planners can use this scenario to identify which woodlands may warrant protection, given zoning and land sales patterns. One of the most effective uses of this analysis is to learn where continuous patches of tree cover and areas of high vineyard suitability overlap. This is where fragmentation of ecologically valuable woodland habitat is more likely to occur. According to our results, areas that may receive significant habitat loss and fragmentation include hillsides east of Healdsburg, Sonoma Valley, and the west side of Santa Rosa (fig. 2a, 2b, also p. 9).

The habitat type most threatened by vineyard expansion in the Mayacmas range running along the east side of Sonoma County and Sonoma Mountains west of Sonoma Valley is absent from the more coastal or steeper sites in Sonoma County (fig. 4). The overstory is predominantly Oregon, valley, black, blue and/or coast live oak and is accompanied by a diverse under-story of native perennial grasses and shrubs such as toyon and manzanita.

Fig. 3 Distribution of patches of continuous tree cover before (1990) and after the maximum development scenario. Patches less than 50 acres were mapped only for southern Sonoma County. Patches greater than 250 acres were mapped for the entire Sonoma County study area.

Fig. 4 Patches of continuous tree cover in Sonoma Valley before (A) and after (B) the maximum vineyard development scenario. Each patch is shown by a unique color.

Moister sites may include Douglas fir and redwood, while flatter areas such as the Laguna de Santa Rosa area primarily support remnant stands of valley oaks.

Figure 2b displays the continuous patches of tree cover that would persist after the “maximum vineyard development” scenario. After applying the conversion scenario, there were 2,742 patches, totaling 222,868 acres. Three of these were larger than 5,000 acres, 24 were 250 to 5,000 acres, and 2,715 were smaller than 250 acres. The increase in the number of medium-sized patches after conversion is due to the fragmentation of larger forested areas into several smaller ones. Over 900 small patches, primarily in the Laguna de Santa Rosa area, are lost altogether when the maximum vineyard development scenario is run. The removal of habitat using the maximum development scenario resulted in a size reduction of the largest patches, deletion of the smallest patches and an increase in the number of medium-sized patches (fig. 3).

Future directions

Recent developments in computer power and mapping analysis software have made it possible for more researchers to model land-use change across large geographic regions (Goodchild et al. 1996). This approach has allowed us to map areas that may be suitable for vineyard expansion and areas where conversions could cause habitat loss and fragmentation. We would like to continue to monitor where vineyard expansion occurs to determine if the areas identified are indeed converted from woodland to vineyard.

We would like to expand our investigations in this area by using remote sensing to monitor vineyard development more regularly and across a larger geographic region. Active collaborations have been initiated to investigate how changes in vineyard development costs and wine-grape values may affect development patterns. We also hope to improve our current model by including additional environmental variables, such as soil characteristics and water availability.

Although vineyard expansion can have negative environmental impacts, other land-uses changes such as urban and exurban development also have consequences for habitat fragmentation and biodiversity. Integrating urban expansion models with our vineyard expansion model will allow us to explore changes in the urban-agriculture-wildland interface, resulting in a better understanding of the forces driving these changes and the relative impacts of different land uses on various ecological processes. It will also be important to incorporate the county planning process in future studies, because areas suitable for vineyard development may be more valued for other land uses such as urban or rural residential.

We have presented this initial model and its results to county planners, agencies and citizens, generating discussion at the local level ( see sidebar, p. 19 ). Further, this method has provided open-space acquisition planners with some direction for protecting oak woodlands, demonstrating that this information can be used to support science-based planning and policy decision-making.

Return to top

Author notes

This research was supported by the UC Sustainable Agriculture Research and Education Program. We would like to thank Circuit Rider Productions, Inc. and the Sonoma County Grape Growers Association for the digital vineyard data. Dave Newburn, Peng Gong and Greg Biging provided valuable discussion on the topic. We are grateful to Greg Greenwood and Sean Saving, who provided the program for analyzing forest fragmentation, and to Colin Brooks for running this analysis. Discussions with Charles Cooke, Jeff Opperman, Daniel Roberts and two anonymous reviewers improved this manuscript.g58

References

[CASS] California Agricultural Statistics Service. 1999 final Grape Crush Report 2000. March Sacramento, CA:

Andren S. Hanson L, Fahrig L, Meriam G. Effects of landscape composition on predation rates at habitat edges. Mosaic Landscapes and Ecological Processes. 1995. London:Chapman & Hall. 225p. 55.

Beir P. Determining minimum habitat areas and habitat corridors for cougars. Conservation Biology. 1993. 7:108. DOI: 10.1046/j.1523-1739.1993.07010094.x [CrossRef]

Carroll C, Zielinski WJ, Noss RF. Using presence-absence data to build and test spatial habitat models for the fisher in the Klamath region, U.S.A. Conservation Biology. 1999. 13:59. DOI: 10.1046/j.1523-1739.1999.98364.x [CrossRef]

Clark WR, Schmitz RA, Bogenschutz TR. Site selection and nest success of ring-necked pheasants as a function of location in Iowa landscapes. J Wildlife Management. 1999. 63:89. DOI: 10.2307/3802812 [CrossRef]

Chen J, Franklin JF, Spies TA. Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forest. Agr and Forest Meteorology. 1995. 63:37. DOI: 10.1016/0168-1923(93)90061-L [CrossRef]

Esseen PA. Tree mortality patterns after experimental fragmentation of an old-growth conifer forest. Biological Conservation. 1994. 68:28. DOI: 10.1016/0006-3207(94)90542-8 [CrossRef]

Ferreira LV, Laurance WF. Effects of forest fragmentation on mortality and damage of selected trees in Central Amazonia. Conservation Biology. 1997. 11:801. DOI: 10.1046/j.1523-1739.1997.96167.x [CrossRef]

Forman RT. Land Mosaics: The Ecology of Landscapes and Regions.. 1995. Cambridge:Cambridge University Press. 632p.

Goodchild MF, Steyaert LT, BO Parks, et al. GIS and Environmental Modeling.. 1996. Fort Collins, CO:GIS World. 486p.

Harrison S, Bruna E. Habitat fragmentation and large-scale conservation: What do we know for sure?. Ecography. 1999. 22:32. DOI: 10.1111/j.1600-0587.1999.tb00496.x [CrossRef]

Hosmer DW, Lemeshow S. Applied Logistic Regression.. 1989. New York:John Wiley & Sons. 307p.

Landis J, Zhang M. The second generation of the California urban futures model. Part 1: Model logic and theory. Environment and Planning A. 1998a. 30:66.

Landis J, Zhang M. The second generation of the California urban futures model. Part 2: Specification and calibration results of the land-use change submodel. Environment and Planning B: Planning and Design. 1998b. 25:824. DOI: 10.1068/b250795 [CrossRef]

Massolo A, Meriggi A. Factors affecting habitat occupancy by wolves in northern Apennines (northern Italy): A model of habitat suitability. Ecography. 1998. 21:107. DOI: 10.1111/j.1600-0587.1998.tb00663.x [CrossRef]

Merenlender A, Crawford J. Vineyards in an Oak Landscape: Exploring the Physical, Biological, and Social Benefits of Maintaining and Restoring Native Vegetation in and Around the Vineyard. UC DANR publication 21577 1998. Oakland, CA:p.15.

Merenlender AM, Heise KL, Brooks C. Effects of subdividing private property on biodiversity in California's north coast oak woodlands. Transactions of the Western Section of the Wildlife Society. 1998. 34:20.

Saunders DA, Hobb RJ, Margules CR. Biological consequences of ecosystem fragmentation: A review. Conservation Biology. 1991. 5:32. DOI: 10.1111/j.1523-1739.1991.tb00384.x [CrossRef]

Sieving KE, Karr JR. Laurance WF, Bierregaard R. Avian extinction and persistence mechanisms in lowland Panama. Tropical Forest Remnants: Ecology, Management and Conservation of Fragmented Communities. 1997. Chicago:University of Chicago Press. 156p. 70.

Stouffer PC, Bierregaard RO. Use of Amazonian forest fragments by understory insectivorous birds: effects of fragment size, surrounding secondary vegetation and time since isolation. Ecology. 1995. 76:903. DOI: 10.2307/2265818 [CrossRef]

Turner IM. Species loss in fragments of tropical rain forests: A review of the evidence. J Applied Ecology. 1996. 33:9. DOI: 10.2307/2404743 [CrossRef]

Citations

Ecosystem Function in Savannas
Dennis Baldocchi et al. 2010.
http://dx.doi.org/10.1201/b10275-10

Use of Riparian Corridors and Vineyards by Mammalian Predators in Northern California
JODI A. HILTY and ADINA M. MERENLENDER 2004. Conservation Biology 18(1):126
http://dx.doi.org/10.1111/j.1523-1739.2004.00225.x

Towards sustainable rural landscapes? a multivariate analysis of the structure of traditional tree cropping systems along a human pressure gradient in a mediterranean region
Rita Biasi et al. 2016. Agroforestry Systems
http://dx.doi.org/10.1007/s10457-016-0006-0

Vineyard proximity to riparian habitat influences Western grape leafhopper (Erythroneura elegantula Osborn) populations
Houston Wilson et al. 2015. Agriculture, Ecosystems & Environment 211:43
http://dx.doi.org/10.1016/j.agee.2015.04.021

Land and water use management in vine growing by using geographic information systems in Castilla-La Mancha, Spain
Francisco J. Montero Riquelme and Antonio Brasa Ramos 2005. Agricultural Water Management 77(1-3):82
http://dx.doi.org/10.1016/j.agwat.2004.09.027

Converting oak woodland or savanna to vineyards may stress groundwater supply in summer
Mark Grismer and Caitlin Asato 2012. California Agriculture 66(4):144
http://dx.doi.org/10.3733/ca.v066n04p144

Studying Biodiversity on Private Lands
Jodi Hilty and Adina M. Merenlender 2003. Conservation Biology 17(1):132
http://dx.doi.org/10.1046/j.1523-1739.2003.01361.x

Adina Merenlender: Building a new mode of extension for biodiversity conservation
Jim Downing 2016. California Agriculture 70(2):57
http://dx.doi.org/10.3733/ca.v070n02p57

Forecasting the effect of land-use change on native and non-native mammalian predator distributions
J. A. Hilty et al. 2006. Biodiversity and Conservation 15(9):2853
http://dx.doi.org/10.1007/s10531-005-1534-5

Environmentally Sustainable Viticulture
Julie Jedlicka et al. 2015.
http://dx.doi.org/10.1201/b18226-18

Vineyard and riparian habitat, not nest box presence, alter avian community composition
Julie A. Jedlicka et al. 2014. The Wilson Journal of Ornithology 126(1):60
http://dx.doi.org/10.1676/13-058.1

Assessing the impact of local habitat variables and landscape context on riparian birds in agricultural, urbanized, and native landscapes
David Luther et al. 2008. Biodiversity and Conservation 17(8):1923
http://dx.doi.org/10.1007/s10531-008-9332-5

Biotic homogenization of the California flora in urban and urbanizing regions
Mark W. Schwartz et al. 2006. Biological Conservation 127(3):282
http://dx.doi.org/10.1016/j.biocon.2005.05.017

Influence of land use on fine sediment in salmonid spawning gravels within the Russian River Basin, California
Jeff J Opperman et al. 2005. Canadian Journal of Fisheries and Aquatic Sciences 62(12):2740
http://dx.doi.org/10.1139/f05-187

Vinecology: pairing wine with nature
Joshua H. Viers et al. 2013. Conservation Letters
http://dx.doi.org/10.1111/conl.12011


University of California, 2801 Second Street, Room 184, Davis, CA, 95618
Email: calag@ucanr.edu | Phone: (530) 750-1223 | Fax: (510) 665-3427
Website: http://calag.ucanr.edu